Coriell Institute for Medical Research
Coriell Institute of Medical Research
  • Request a Quote
  • Donate
  • Login
  • View Cart
Sample Catalog | Custom Services | Core Facilities | Genomic Data Search
  • Biobank
    • NIGMS
    • NINDS
    • NIA
    • NHGRI
    • NEI
    • Allen Cell Collection
    • Rett Syndrome iPSC Collection
    • Autism Research Resource
    • HD Community Biorepository
    • CDC Cell and DNA
    • J. Craig Venter Institute
    • Orphan Disease Center Collection
    • All Biobanks
  • Research
    • Overview
    • Meet Our Scientists
      • Our Faculty
      • Our Scientific Staff
    • Camden Cancer Research Center
    • Epigenetic Therapies SPORE
    • Core Facilities
    • Epigenomics
    • Camden Opioid Research Initiative (CORI)
    • The Issa & Jelinek Lab
    • The Jian Huang Lab
    • The Luke Chen Lab
      • The Lab
      • The Team
      • Publications
    • The Scheinfeldt Lab
    • The Shumei Song Lab
    • The Nora Engel Lab
      • The Lab
      • The Team
      • Publications
    • Publications
  • Services
    • Overview
    • Biobanking Services
      • Core Services
      • Project Management
      • Research Support Services
      • Sample Cataloging
      • Sample Collection Kits
      • Sample Data Management
      • Sample Distribution
      • Sample Management
      • Sample Procurement
      • Sample Storage
    • Bioinformatics and Biostatistics Services
    • Cellular and Molecular Services
      • Biomarker Research Solutions
      • Cell Culture
      • Nucleic Acid Isolation and Quality Control
    • Clinical Trial Support
      • Overview
      • Sample Collection
      • Data Management
      • Sample Processing and QC
      • Storage and Distribution
      • Biomarker Services
      • Data Analaysis
    • Core Facilties
      • Overview
      • Animal and Xenograft
      • Bioinformatics and Biostatistics
      • Cell Imaging
      • CRISPR Gene Engineering
      • Flow Cytometry and Cell Sorting
      • Genomics and Epigenomics
      • iPSC - Induced Pluripotent Stem Cells
      • Organoids
    • Coriell Marketplace
    • Genomic, Epigenomic and Multiomics Services
    • Stem Cells and iPSC Services
      • Core Services
      • Reprogramming
      • Characterization and Quality Control
      • Differentiated Cell Lines
      • iPSC-Derived Organoids
      • iPSC Expansion
      • iPSC Gene Editing
  • Ordering
    • Stem Cells
    • Cell Lines
    • DNA and RNA
    • Featured Products
      • FFPE
      • HMW DNA
    • Genomic Data Search
    • Search by Catalog ID
    • Help
      • Create Account
      • Order Online
      • Ordering FAQ
      • FAQs/Culture Instructions
      • Reference Materials
        • Biobanks
        • NIGMS Repository
        • NHGRI Repository
        • NINDS Repository
        • NIA Repository
        • NIST
        • GeT-RM
      • Secondary Distribution Policies
      • MTA Assurance Form
      • Shipment Policy
      • Contact Customer Service
  • About Us
    • Our History
    • Meet Our Team
    • Meet Our Board
    • Education
      • Science Fair
      • Summer Experience
      • Outreach
      • Research Program Internship
    • Press Room
      • Press Releases
      • Coriell Blog
      • Annual Report
    • Careers
      • Working at Coriell
    • Giving
      • Donate
      • Giving FAQ
    • Contact Us
    • Legal Notice
  • Login View Cart
search submit
NG11498 DNA from Fibroblast

Description:

HUTCHINSON-GILFORD PROGERIA SYNDROME; HGPS
LAMIN A/C; LMNA

Affected:

Yes

Sex:

Male

Age:

14 YR (At Sampling)

  • Overview
  • Characterizations
  • Phenotypic Data
  • Publications
  • External Links
  • Images

Overview

back to top
Repository NIA Aging Cell Culture Repository
Subcollection Heritable Diseases
Quantity 10 µg
Quantitation Method Please see our FAQ
Biopsy Source Thigh
Cell Type Fibroblast
Tissue Type Skin
Transformant Untransformed
Sample Source DNA from Fibroblast
Race Black/African American
Relation to Proband proband
Confirmation Clinical summary/Case history
Species Homo sapiens
Common Name Human
Remarks Donor showed typical appearance including loss of subcutaneous fat, alopecia, osteoarthritis, and a grade II/VI systolic heart murmur. The biopsy was taken ante-mortem on 4/26/91 from skin of the anterior midupper right thigh. The culture was initiated on 4/30/91 using explants of minced skin tissue. The cell morphology is fibroblast-like. Donor subject has a de novo single base substitution, a C>T change at nucleotide 2036 (2036C>T), which results in a silent change at codon 608 [Gly608Gly (G608G)] in exon 11 of the Lamin A gene (LMNA). This substitution creates an exonic consensus splice donor sequence and results in activation of a cryptic splice site which in turn causes skipping of 150 bp of the LMNA mRNA leading to the deletion of 50 amino acids from the protein. This altered LMNA protein was detected on western blots [Eriksson et al., Nature 423:293 (2003)]. Same subject as AG28340 (stem Cell).

Characterizations

back to top
PDL at Freeze 5.4
Passage Frozen 5
 
IDENTIFICATION OF SPECIES OF ORIGIN Species of Origin Confirmed by Nucleoside Phosphorylase,Glucose-6-Phosphate Dehydrogenase, and Lactate Dehydrogenase Isoenzyme Electrophoresis
 
Gene LMNA
Chromosomal Location 1q21.2
Allelic Variant 1 150330.0022; HUTCHINSON-GILFORD PROGERIA SYNDROME
Identified Mutation GLY608GLY; Description: In 18 of 20 patients with classic Hutchinson-Gilford progeria syndrome (176670), Eriksson et al. [Nature 423: 293 (2003)] found an identical de novo single-base substitution, a C-to-T change resulting in a silent gly-to-gly mutation at codon 608 (G608G) within exon 11 of the LMNA gene. This substitution created an exonic consensus splice donor sequence and resulted in activation of a cryptic splice site and deletion of 50 basepairs of prelamin A. This mutation was not identified in any of the 16 parents available for testing.

Phenotypic Data

back to top
Remarks Donor showed typical appearance including loss of subcutaneous fat, alopecia, osteoarthritis, and a grade II/VI systolic heart murmur. The biopsy was taken ante-mortem on 4/26/91 from skin of the anterior midupper right thigh. The culture was initiated on 4/30/91 using explants of minced skin tissue. The cell morphology is fibroblast-like. Donor subject has a de novo single base substitution, a C>T change at nucleotide 2036 (2036C>T), which results in a silent change at codon 608 [Gly608Gly (G608G)] in exon 11 of the Lamin A gene (LMNA). This substitution creates an exonic consensus splice donor sequence and results in activation of a cryptic splice site which in turn causes skipping of 150 bp of the LMNA mRNA leading to the deletion of 50 amino acids from the protein. This altered LMNA protein was detected on western blots [Eriksson et al., Nature 423:293 (2003)]. Same subject as AG28340 (stem Cell).

Publications

back to top
Kim J, Hwang Y, Kim S, Chang Y, Kim Y, Kwon Y, Kim J, Transcriptional activation of endogenous Oct4 via the CRISPR/dCas9 activator ameliorates Hutchinson-Gilford progeria syndrome in mice Aging cell:e13825 2023
PubMed ID: 36964992
 
Della Valle F, Reddy P, Yamamoto M, Liu P, Saera-Vila A, Bensaddek D, Zhang H, Prieto Martinez J, Abassi L, Celii M, Ocampo A, Nuñez Delicado E, Mangiavacchi A, Aiese Cigliano R, Rodriguez Esteban C, Horvath S, Izpisua Belmonte JC, Orlando V, LINE-1 RNA causes heterochromatin erosion and is a target for amelioration of senescent phenotypes in progeroid syndromes Science translational medicine14:eabl6057 2022
PubMed ID: 35947677
 
Frankel D, Delecourt V, Novoa-Del-Toro EM, Robin JD, Airault C, Bartoli C, Carabalona A, Perrin S, Mazaleyrat K, De Sandre-Giovannoli A, Magdinier F, Baudot A, Lévy N, Kaspi E, Roll P, miR-376a-3p and miR-376b-3p overexpression in Hutchinson-Gilford progeria fibroblasts inhibits cell proliferation and induces premature senescence iScience25:103757 2022
PubMed ID: 35118365
 
Kang SM, Yoon MH, Ahn J, Kim JE, Kim SY, Kang SY, Joo J, Park S, Cho JH, Woo TG, Oh AY, Chung KJ, An SY, Hwang TS, Lee SY, Kim JS, Ha NC, Song GY, Park BJ, Progerinin, an optimized progerin-lamin A binding inhibitor, ameliorates premature senescence phenotypes of Hutchinson-Gilford progeria syndrome Communications biology4:5 2021
PubMed ID: 33398110
 
Kychygina A, Dall'Osto M, Allen JAM, Cadoret JC, Piras V, Pickett HA, Crabbe L, Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools Scientific reports11:13195 2021
PubMed ID: 34162976
 
Lee J, Bignone PA, Coles LS, Liu Y, Snyder E, Larocca D, Induced pluripotency and spontaneous reversal of cellular aging in supercentenarian donor cells Biochemical and biophysical research communications11:13195 2020
PubMed ID: 32115145
 
Dworak N, Makosa D, Chatterjee M, Jividen K, Yang CS, Snow C, Simke WC, Johnson IG, Kelley JB, Paschal BM, A nuclear lamina-chromatin-Ran GTPase axis modulates nuclear import and DNA damage signaling Aging Cell11:13195 2018
PubMed ID: 30565836
 
Larrieu D1, Viré E2, Robson S2, Breusegem SY2, Kouzarides T2, Jackson SP1., Inhibition of the acetyltransferase NAT10 normalizes progeric and aging cells by rebalancing the Transportin-1 nuclear import pathway Science Signaling11:13195 2018
PubMed ID: 29970603
 
Li Y, Zhou G, Bruno IG, Zhang N, Sho S, Tedone E, Lai TP, Cooke JP, Shay JW, Transient introduction of human telomerase mRNA improves hallmarks of progeria cells Aging cell18:e12979 2018
PubMed ID: 31152494
 
Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L., Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell.13(6):691-705 2013
PubMed ID: 24315443
 
Chen CY, Chi YH, Mutalif RA, Starost MF, Myers TG, Anderson SA, Stewart CL, Jeang KT., Accumulation of inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell149:565-77 2012
PubMed ID: 22541428
 
Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, Shanahan CM, Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging Circulation121:2200-10 2010
PubMed ID: 20458013
 
Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A, A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects Cell stem cell8:31-45 2010
PubMed ID: 21185252
 
Britt-Compton B, Wyllie F, Rowson J, Capper R, Jones RE, Baird DM, Telomere dynamics during replicative senescence are not directly modulated by conditions of oxidative stress in IMR90 fibroblast cells Biogerontology8:31-45 2008
PubMed ID: 19214769
 
Decker ML, Chavez E, Vulto I, Lansdorp PM, Telomere length in Hutchinson-Gilford progeria syndrome Mechanisms of ageing and development130:377-83 2008
PubMed ID: 19428457
 
Moulson CL, Fong LG, Gardner JM, Farber EA, Go G, Passariello A, Grange DK, Young SG, Miner JH, Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes Human mutation28:882-9 2007
PubMed ID: 17469202
 
Scaffidi P, Misteli T, Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing Nature cell biology28:882-9 2007
PubMed ID: 18311132
 
Capell BC, Erdos MR, Madigan JP, Fiordalisi JJ, Varga R, Conneely KN, Gordon LB, Der CJ, Cox AD, Collins FS, Inhibiting farnesylation of progerin prevents the characteristic nuclear blebbing of Hutchinson-Gilford progeria syndrome Proceedings of the National Academy of Sciences of the United States of America102:12879-84 2005
PubMed ID: 16129833
 
Glynn MW, Glover TW, Incomplete processing of mutant lamin A in Hutchinson-Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition Human molecular genetics14:2959-69 2005
PubMed ID: 16126733
 
Scaffidi P, Misteli T, Reversal of the cellular phenotype in the premature aging disease Hutchinson-Gilford progeria syndrome. Nat Med11(4):440-5 2005
PubMed ID: 15750600
 
Csoka AB, English SB, Simkevich CP, Ginzinger DG, Butte AJ, Schatten GP, Rothman FG, Sedivy JM, Genome-scale expression profiling of Hutchinson-Gilford progeria syndrome reveals widespread transcriptional misregulation leading to mesodermal/mesenchymal defects and accelerated atherosclerosis. Aging Cell3(4):235-43 2004
PubMed ID: 15268757
 
Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS, Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature423(6937):293-8 2003
PubMed ID: 12714972
 
Hasty MF, Vann WF Jr, Progeria in a pediatric dental patient: literature review and case report. Pediatr Dent10:314-9 1988
PubMed ID: 2978820

External Links

back to top
dbSNP dbSNP ID: 17222
Gene Cards LMNA
Gene Ontology GO:0005198 structural molecule activity
GO:0005515 protein binding
GO:0005634 nucleus
GO:0005638 lamin filament
GO:0005882 intermediate filament
GO:0007517 muscle development
GEO GEO Accession No: GSM603044
GEO Accession No: GSM603045
GEO Accession No: GSM603052
GEO Accession No: GSM603053
GEO Accession No: GSM88283
GEO Accession No: GSM88284
GEO Accession No: GSM88285
GEO Accession No: GSM88301
GEO Accession No: GSM88302
GEO Accession No: GSM88303
NCBI Gene Gene ID:4000
NCBI GTR 150330 LAMIN A/C; LMNA
176670 HUTCHINSON-GILFORD PROGERIA SYNDROME; HGPS
OMIM 150330 LAMIN A/C; LMNA
176670 HUTCHINSON-GILFORD PROGERIA SYNDROME; HGPS
Omim Description HUTCHINSON-GILFORD PROGERIA SYNDROME; HGPS
  PROGERIA

Images

back to top
View karyotype 
Pricing
Commercial:
$155.00USD
Academic &
Non-profit:
$72.00USD
NIA Grantees:
$62.00USD
Add to Cart
How to Order
  • Ordering Instructions
  • MTA / Assurance Form
  • Statement of Research Intent Form
Related Products
Same Subject
  • AG11498 - Fibroblast
  • AG28340 - Stem cell
Miscellaneous
  • Custom Services

Our mission is to prevent and cure disease through biomedical research.

CONTACT US

CUSTOMER SERVICE
customerservice@coriell.org (800) 752-3805 • (856) 757-4848
Subscribe to our newsletter here

Coriell Institute for Medical Research
403 Haddon Avenue Camden, NJ 08103, USA (856) 966-7377

Ⓒ 2025 Coriell Institute. All rights reserved.

  • Facebook
  • Linkedin
  • Youtube