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Abstract

Human height is the prototypical polygenic quantitative trait. Recently, several genetic variants influencing adult height
were identified, primarily in individuals of East Asian (Chinese Han or Korean) or European ancestry. Here, we examined 152
genetic variants representing 107 independent loci previously associated with adult height for transferability in a well-
powered sample of 1,016 unrelated African Americans. When we tested just the reported variants originally identified as
associated with adult height in individuals of East Asian or European ancestry, only 8.3% of these loci transferred (p-
values#0.05 under an additive genetic model with directionally consistent effects) to our African American sample.
However, when we comprehensively evaluated all HapMap variants in linkage disequilibrium (r2$0.3) with the reported
variants, the transferability rate increased to 54.1%. The transferability rate was 70.8% for associations originally reported as
genome-wide significant and 38.0% for associations originally reported as suggestive. An additional 23 loci were
significantly associated but failed to transfer because of directionally inconsistent effects. Six loci were associated with adult
height in all three groups. Using differences in linkage disequilibrium patterns between HapMap CEU or CHB reference data
and our African American sample, we fine-mapped these six loci, improving both the localization and the annotation of
these transferable associations.
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Introduction

Human adult height (stature, MIM 606255) is a classic complex

trait, influenced by many genes and environmental factors [1].

Twin, family, and adoption studies indicate that ,80–90% of

phenotypic variation in adult height in individuals of European

ancestry is due to genetic variation [2–10]. For comparison,

estimates of the amount of phenotypic variation in adult height

explained by genetic variation are ,40–60% for individuals of

African ancestry [11–15] and ,65% for individuals of Chinese

ancestry [16]. These estimates clearly show that adult height is a

highly heritable trait across human populations. However, these

estimates provide no information as to whether the same genetic

variants influence adult height across human populations.

Recent progress in dissecting the genetic architecture of adult

height includes the identification of 106 common autosomal single

nucleotide polymorphisms (SNPs) that were associated with stature

in genome-wide association studies in populations of European

ancestry [17–21]. Some of these associations were replicated in

cohorts of African Americans [19,21]. Taken together, this

collection of genetic variants that underlie variation in adult

height thus far explains only ,5% of phenotypic variation [22].

Since these initial publications, an additional 46 common

autosomal SNPs have been associated with adult height in

individuals of Chinese Han [23], European [24], or Korean

ancestry [25], for a total of 152 SNPs.

The importance of replication studies as part of the process of

studying genome-wide association is well known and criteria for

establishing positive replication have been suggested [26]. One

criterion for replication is that the follow-up sample should be a

random sample drawn from the same population as the discovery

sample [26]. We distinguish replication from transferability on the

basis that the latter applies if a follow-up sample is drawn from a

different population than the discovery sample. Consequently, if

an association replicates but does not transfer across populations,

then the association is population-specific. In this study, we

investigated the transferability of association with adult height for

the 152 previously reported SNPs using a population-based sample

of 1,016 unrelated African Americans enrolled from the

Washington, DC metropolitan area in a genetic epidemiology
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project entitled the Howard University Family Study (HUFS). Our

main objective was to assess transferability of reported genetic

associations originally detected in individuals of East Asian or

European ancestry to our sample of African Americans. For those

associations that transferred across all three groups, we used

differences in linkage disequilibrium patterns across human

populations to localize the loci, thereby allowing for improved

annotation.

Results

From the entire HUFS sample of 1,976 individuals, we

extracted a subset of 1,055 unrelated individuals. We identified

37 individuals as outliers, whereas the remaining 1,018 individuals

formed one cluster (Fig. 1). Based on STRUCTURE analysis, the

estimated individual proportion of African ancestry was

0.78260.110. The projection of the first two principal coordinates

Figure 1. Principal coordinate analysis. Shown are the first three dimensions from classical multidimensional scaling of the allele sharing
distance matrix. Red represents individuals from the HapMap CEU sample, green represents individuals from the HapMap YRI sample, and blue
represents individuals from the HUFS sample (African Americans). The lower panels show two-dimensional projections of the first three dimensions
for the HUFS sample including the CEU and YRI reference samples. The upper panels show two-dimensional projections of the first three dimensions
for just the HUFS sample. The diagonal panels show the eigenvalues and in parentheses the variance explained by the first three dimensions.
doi:10.1371/journal.pone.0008398.g001
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from multi-dimensional scaling analysis including representative

founder samples also shows the presence of admixture (Fig. 1). The

variance inflation factor for genomic control was estimated to be

1.03 (Supplementary Fig. S1), indicating that the test statistics

genome-wide were not substantially inflated and that residual

population stratification was not a concern.

We investigated whether heritability of adult height among

African Americans in the HUFS is more similar to heritability

among African individuals or to heritability among European

individuals. For the HUFS sample, the estimated heritability of

adult height was 0.697 (SE 0.006) in a sample of 1,006 African

American individuals in 326 families, intermediate between

heritability estimates for adult height in African and European

individuals. We hypothesize that this estimate is larger than

previous estimates for African individuals because of a more

similar environment between Europeans and African Americans

than between African Americans and Africans and because of

admixture. It is critical to note that similar heritability estimates do

not imply that the same genetic variants influence adult height in

these different samples.

To assess the transferability of genetic associations previously

identified for adult height in populations of East Asian or

European ancestry to African Americans, we collated 77

autosomal SNPs strongly associated (reported p-values #561027)

with human height under an additive model and 75 autosomal

SNPs suggestively associated (reported p-values ranging from

4.561023 to 561027) with human height under an additive model

(Fig. 2) [17–21,23–25]. Before testing transferability, we per-

formed a power analysis. Based on the HUFS sample size of 1,016

unrelated individuals (Table 1), we estimated 80% power at a

significance level of 0.05 to detect effect sizes of 0.12 cm and

0.03 cm under an additive model at a minimum minor allele

frequency of 0.01 and an average minor allele frequency of 0.22,

respectively. These estimates indicate that our sample was well-

powered given previously reported effect sizes between 0.2 cm and

0.6 cm.

We took two approaches to evaluating transferability. First, we

directly evaluated the previously reported SNPs using what has

been referred to as an ‘‘exact’’ approach [27]. The power of this

approach relies on the assumption that the previously associated

marker and the causal variant(s) remain in linkage disequilibrium

across populations (Fig. 3A). By accounting for linkage disequilib-

rium (r2$0.3) between SNPs in the HapMap CEU and CHB

samples, we determined that the 152 SNPs represent 107

independent loci. Using this approach, we detected significant

Figure 2. Genomic locations of SNPs previously associated with adult height. Black dots indicate associations originally discovered in
populations of European ancestry. Red dots indicate associations originally discovered in populations of Chinese Han ancestry. Blue dots indicate
associations originally discovered in populations of Korean ancestry. The y-axis represents discovery p-values on the 2log10 scale. The light gray line
indicates a p-value of 561027.
doi:10.1371/journal.pone.0008398.g002

Table 1. Summary of the Howard University Family Study
unrelated participants.

Characteristic Male Female

Sample size 419 597

Age (years) 47.9 (12.4)a 48.7 (13.7)

Height (cm) 175.7 (7.5) 162.9 (7.4)

aShown are means (standard deviations).
doi:10.1371/journal.pone.0008398.t001
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transfer to our African American sample for 7 of 84 (8.3%) testable

loci (Supplementary Table S1).

Second, we comprehensively evaluated all HapMap Phase II

SNPs in the region of linkage disequilibrium (r2$0.3) surrounding

the previously reported SNPs using either CEU (for SNPs reported

in studies of European-ancestry samples) or CHB (for SNPs

reported in studies of East Asian-ancestry populations) data as

appropriate, an approach referred to as ‘‘local’’ [27]. The power of

this approach relies on the assumption that the previously

associated marker points to a region of linkage disequilibrium in

the discovery sample and that any SNP in such a region is

potentially a proxy SNP for the causal variant(s) (Fig. 3B). Using

this approach, we detected significant transfer to our African

American sample for 53 of 98 (54.1%) testable loci (Supplemen-

tary Table S1). Taken together, these findings suggest that

previously associated SNPs and causal variants are often not in

linkage disequilibrium in our African American sample although

they are in linkage disequilibrium in the discovery samples.

The transferability rate was 70.8% for the 77 variants that

originally showed strong associations (p-values #561027) and

38.0% for the 75 variants that originally showed suggestive

associations (p-values ranging from 4.561023 to 561027;

Supplementary Table S1). The discovery p-values for associations

that transferred to our African American sample ranged from

2.761023 to 1.4610227 (Supplementary Table S1). These findings

support the hypothesis that genuine associations exist with p-values

not meeting strict genome-wide significance levels. Encouragingly,

all associations with discovery p-values#10213 transferred to our

African American sample (Supplementary Table S1).

An important factor that is likely to influence the rate of

transferability in our study is coverage of genetic variation. We

examined this issue by estimating how well our admixed African

American sample consisting of ,2.4 million experimentally

determined and imputed genotyped SNPs covered the variation

in the HapMap CEU and CHB samples. Our calculations show

that coverage is 71.2% for HapMap CEU variation and 75.8% for

HapMap CHB variation (Supplementary Table S1). Due to this

limitation, it is possible that we underestimated transferability.

Fine-Mapping
For associations discovered in populations with longer-range

linkage disequilibrium patterns, follow-up in a population with

shorter-range linkage disequilibrium patterns offers the opportu-

nity for in silico fine-mapping [28]. Thus, we investigated whether

the African American sample provided refined localization for the

six loci that transferred across all three population groups (African

Americans, East Asians, and Europeans).

The association of SNP rs12735613 at 118,685,496 bp on

chromosome 1 was originally discovered in individuals of

European ancestry [20]. The association of proxy SNP

rs17038182 at 118,669,928 bp was discovered in individuals of

Korean ancestry [25]. We found that rs2474945 at

118,686,437 bp was the only SNP in the region of linkage

disequilibrium surrounding rs12735613 or rs17038182 for which

the association transferred to our sample of African American

individuals (Fig. 4 and Supplementary Table S1). rs2474945 is

157 kb upstream of the gene SPAG17 (GeneID 200162).

Importantly, neither rs12735613 nor rs17038182 themselves are

significantly associated with adult height in our sample (Supple-

mentary Table S1). Thus, this locus exemplifies the situation

depicted in Fig. 3B, in which the exact approach fails to yield

significant transfer but the local approach succeeds.

The association of rs3791679 at 55,950,306 bp on chromosome

2 was originally discovered in individuals of European ancestry

[21]. The proxy SNP rs3791675 at 55,964,813 bp was found to

transfer in individuals of Korean ancestry [25]. We found that the

association at both rs3791679 and rs3791675 transferred to our

sample of African American individuals, as well as the association

at rs7571341 at 55,924,566 bp (Supplementary Table S1). SNPs

rs3791679 and rs3791675 are intronic in and rs7571341 is 22 kb

downstream of the gene EFEMP1 (GeneID 2202).

The associations of rs6440003 at 142,576,899 bp on chromo-

some 3 [20], rs6763931 at 142,585,523 bp [21], and rs724016 at

142,588,260 bp [18] were all originally discovered in individuals

of European ancestry. The association of rs1051317 at

142,626,120 bp was discovered in individuals of Korean ancestry

[25]. We found six SNPs (rs9829470, rs9821337, rs9822195,

rs13091182, rs6785073, and rs6789653) from 142,536,380 bp to

142,633,680 bp for which the association transferred to our

sample of African American individuals (Supplementary Table

S1). SNPs rs9829470, rs9821337, and rs9822195 are all upstream

of the gene ZBTB38 (GeneID 253461) and SNPs rs13091182,

rs6785073, and rs6789653 are all intronic in the same gene.

The associations of rs6842303 at 17,463,153 bp on chromo-

some 4 [21], rs16896068 at 17,553,938 bp [20], and rs6830062 at

17,626,828 bp [21] were all originally discovered in individuals of

European ancestry. The association of rs2011603 at

Figure 3. Schematic diagram of different linkage disequilibri-
um patterns in discovery and follow-up samples. A) The
associated tag SNP and a causal variant are in the same region of
linkage disequilibrium in both the discovery and follow-up samples.
Both the exact and local approaches may yield successful transfer. B)
The associated tag SNP and a causal variant are not in the same region
of linkage disequilibrium in both the discovery and follow-up samples.
The exact approach will fail for the original tag SNP but the local
approach may succeed for other proxy SNPs if they are in the same
region of linkage disequilibrium as the causal variant in the follow-up
sample.
doi:10.1371/journal.pone.0008398.g003
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17,643,582 bp was discovered in individuals of Korean ancestry

[25]. We found six SNPs (rs16895878, rs16895895, rs16895971,

rs13141926, rs13103931, and rs2707450) from 17,456,379 bp to

17,551,658 bp for which the association transferred to our sample

of African American individuals (Supplementary Table S1). SNP

rs16895878 is in the 39 UTR of and rs16895895, rs16895971,

rs13141926, rs13103931, and rs2707450 are intronic in the gene

LCORL (GeneID 254251).

The associations of rs10958476 at 57,258,362 bp at chromo-

some 8 [21] and rs9650315 at 57,318,152 bp [18] were originally

discovered in individuals of European ancestry. The association of

rs13273123 at 57,263,345 bp was discovered in individuals of

Korean ancestry [25]. We found nine SNPs (rs6987156,

rs6474053, rs7829319, rs7815788, rs13272414, rs4469431,

rs13248165, rs13275320, and rs7460090) from 57,332,019 bp to

57,356,717 bp that transferred to our sample of African American

individuals (Supplementary Table S1). These SNPs are 38–63 kb

downstream of the gene CHCHD7 (GeneID 79145), 18–43 kb

downstream of the gene RDHE2 (GeneID 195814), and 46–70 kb

upstream of the gene PLAG1 (GeneID 5324).

The association of rs757608 at 56,852,059 bp on chromosome

17 [21] was originally discovered in individuals of European

ancestry. The association of rs2079795 at 56,851,431 bp was

discovered in individuals of Korean ancestry [25]. In addition to

these two SNPs, we found 12 SNPs (rs11079429, rs2270114,

rs8068318, rs9892365, rs758599, rs758598, rs1076392, rs882367,

rs11868532, rs9905140, rs7214743, and rs9905385) from

56,827,185 bp to 56,853,032 bp for which the association

transferred to our sample of African American individuals (Fig. 5

and Supplementary Table S1). These SNPs are 14 kb upstream

through 11 kb downstream of the gene TBX2 (GeneID 6909) and

36–61 kb upstream of the gene TBX4 (GeneID 9496). This locus

Figure 4. Association p-values and linkage disequilibrium in the HUFS sample for the height locus at chromosome 1p12. The open
red diamond indicates SNP rs12735613 (for which the association was discovered in individuals of European ancestry), the filled red diamond
indicates rs17038182 (for which the association was discovered in individuals of Korean ancestry), and the blue diamond indicates the SNP associated
in the HUFS (African American) sample. The boundaries of the set of SNPs reflect r2$3 in the HapMap CHB data surrounding rs17038182.
doi:10.1371/journal.pone.0008398.g004
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exemplifies the situation depicted in Fig. 3A, in which the exact

approach yields significant transfer.

To investigate whether these 14 SNPs reflect one underlying

signal, we tested each SNP in this region for association

conditional on the SNP (rs9905140) with the strongest signal in

the distal part of the region (Fig. 5). Conditioning on rs9905140

failed to completely eliminate the signal at the other SNPs

(Table 2). Similarly, conditioning on rs9892365, the SNP with the

strongest association in the proximal part of the region (Fig. 5),

failed to completely eliminate the signal at the other SNPs

(Table 2). However, conditioning on both rs9892365 and

rs9905140 successfully eliminated the signal at the other SNPs

(Table 2). These results suggest the presence of two associations

within one region of linkage disequilibrium in the CEU and CHB

samples but spanning multiple regions of linkage disequilibrium in

our African American sample.

Discussion

In this study, we sought to identify genetic variants influencing

adult height in African Americans. Our study of 1,016 African

Americans was well-powered to test for transferability of

associations based on previously reported effect sizes. We found

that 8.3% of genetic variants previously reported to influence adult

height in individuals of East Asian or European ancestry also

influence adult height in our sample of African Americans.

However, when we comprehensively evaluated all HapMap SNPs

in linkage disequilibrium with those genetic variants, we found that

54.1% of loci were associated with adult height in our sample of

African Americans. Thus, it was uncommon for associations at tag

SNPs on commercial chips to directly transfer across populations.

Rather, it was more common that other proxy SNPs in linkage

disequilibrium with the originally reported tag SNPs transferred

Figure 5. Association p-values and linkage disequilibrium in the HUFS sample for the height locus at chromosome 17q23.2. The
open red diamond indicates SNP rs757608 (for which the association was discovered in individuals of European ancestry), the filled red diamond
indicates rs2079795 (for which the association was discovered in individuals of Korean ancestry), and blue diamonds indicate SNPs associated in the
HUFS (African American) sample. The boundaries of the set of SNPs reflect r2$3 in the HapMap CHB data surrounding rs2079795.
doi:10.1371/journal.pone.0008398.g005
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across populations. Furthermore, six associated loci transferred

across all three population groups. These observations argue

strongly for the comprehensive evaluation of linkage disequilibri-

um as well as inclusion of populations with ancestries from

different parts of the world as part of genome-wide association

studies [26,29,30].

One of our criteria for declaring successful transfer was

consistency in the direction of effect size estimates [26]. It has

been noted that differences in haplotype frequencies and linkage

disequilibrium, as well as other factors such as unmodeled

interactions, can induce changes in the sign of effect size estimates

[31,32]. We therefore mention that 23 loci yielded significant p-

values but directionally inconsistent effect size estimates.

Linkage disequilibrium has both positive and negative impacts

on association testing. On the positive side, differences in linkage

disequilibrium patterns can increase resolution for localizing

indirect associations. Resolution generally increases as we fine-

map a discovery in a sample of individuals of European ancestry

using a follow-up sample of individuals of African ancestry due to

the shorter range of linkage disequilibrium in the latter sample. We

took advantage of the shorter range of linkage disequilibrium in

our African American sample to localize the height loci originally

reported in East Asians and Europeans. Our fine-mapping effort

revealed evidence that one height locus at chromosome 17q23.2

appears to consist of two associations spanning multiple regions of

linkage disequilibrium in our sample of African American

individuals. Such a finding would not be possible if we had

investigated just the reported SNPs (the exact approach). On the

negative side, it is widely assumed that the sample size for testing

indirect association scales inversely with the linkage disequilibrium

r2 between the typed marker and the untyped causal variant.

However, this simple rule tends to underestimate the sample size

necessary to maintain power to test indirect association [33].

A practical issue with the local approach is how to define the set

of SNPs to be considered for replication or transferability. One

possibility is to define the set based on the gene containing the

original SNP, assuming that the original SNP is genic. Another

possibility is to define the set based on linkage disequilibrium

surrounding the original SNP, as we did in this study. If a gene

spans multiple regions of linkage disequilibrium, then the latter

choice is preferable because it requires less genotyping and induces

a smaller statistical testing burden. The latter choice also applies

whether or not the original SNP is genic.

In summary, we investigated genetic variants influencing adult

height in African Americans. We found that 54.1% of loci

previously associated with adult height in populations of East

Asian or European ancestry transferred to our sample of African

Americans. Our results highlight the importance of comprehen-

sively evaluating all genetic variants in linkage disequilibrium with

associated markers when testing for either replication or

transferability. We successfully used the shorter range of linkage

disequilibrium in our African American sample to refine the

localization of the six height loci that transferred across African

American, East Asian, and European samples.

Materials and Methods

Ethics Statement
Ethical approval for the Howard University Family Study

(HUFS) was obtained from the Howard University Institutional

Review Board and written informed consent was obtained from

each participant.

Study Samples
The HUFS is a population-based study of African American

families enrolled from the Washington, D.C. metropolitan area.

Table 2. Conditional analysis of the height locus at 17q23.2.

SNP Position unconditional pa
p conditional on
rs9905140

p conditional on
rs9892365

p conditional on rs9905140
and rs9892365

rs2286528 56,826,154 0.9553 0.3479 0.7710 0.6028

rs11079429 56,827,185 0.0089 0.2300 0.0318 0.2929

rs2270114 56,833,558 0.0107 0.2585 0.0462 0.3476

rs734375 56,836,155 0.7153 0.5489 0.4657 0.9817

rs8068318 56,838,548 0.0218 0.8584 0.1120 0.9261

rs4459608 56,845,812 0.7329 0.5953 0.4338 0.9686

rs9892365 56,846,166 0.0063 0.0411 NA NA

rs758599 56,847,050 0.0151 0.4144 0.2222 0.8400

rs758598 56,847,496 0.0136 0.3571 0.2016 0.7555

rs1076392 56,847,790 0.0220 0.5024 0.2837 0.9688

rs882367 56,849,356 0.0238 0.5034 0.2518 0.9515

rs11868532 56,850,865 0.0098 0.6992 0.0489 0.7513

rs9905140 56,851,020 0.0039 NA 0.0414 NA

rs2079795 56,851,431 0.0206 0.3404 0.2483 0.7649

rs740754 56,851,642 0.0890 0.0314 0.1731 0.0707

rs740753 56,851,709 0.9833 0.3674 0.6103 0.8242

rs757608 56,852,059 0.0089 0.0653 0.4231 0.6324

rs7214743 56,852,834 0.0085 0.0584 0.4241 0.6359

rs9905385 56,853,032 0.0069 0.0575 0.4860 0.7215

aP-values less than 0.05 are shown in bold.
doi:10.1371/journal.pone.0008398.t002
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The main objectives of the HUFS are to: 1) enroll and examine a

randomly ascertained cohort of 350 African American families

with members in multiple generations from the Washington, D.C.

metropolitan area; 2) characterize the study participants for

anthropometry (including weight, height, waist and hip circum-

ferences, and body composition measures), blood pressure (BP)

and related physiologic intermediates, and diabetes-related and

lipid-related variables; 3) evaluate the association between

hypertension/blood pressure and selected candidate genes; and

4) store high-quality DNA to conduct studies to identify novel

genomic regions linked and/or associated with common complex

traits. Families were not ascertained based on any phenotype. In a

second phase of recruitment, additional unrelated individuals from

the same geographic area were enrolled to facilitate nested case-

control study designs.

During a clinical examination, we collected demographic

information and measured BP, anthropometry, and body

composition (fat mass and fat-free mass). Blood was drawn for

biochemical assays (sodium, potassium, creatinine, urea, and

glucose) and several other molecular phenotypes (including

cortisol, insulin, and leptin). The total number of recruited

individuals was 2,028, of which 1,976 remained after data

cleaning. From this sample, we extracted a subset of 1,055

unrelated individuals. The enrollment procedures (forms, mea-

surements, and lab assays) for unrelated individuals were identical

to those for the families. Height was measured with a stadiometer

to the nearest 0.1 cm.

Genotyping and Quality Control
Genome-wide genotyping was performed using the Affymetrix

Genome-Wide Human SNP Array 6.0 and genotypes calls were

made using the Birdseed algorithm, version 2 [34]. We had four

genotype inclusion criteria: the individual sample success rate had

to be $95% (no samples excluded), the SNP call rate had to be

$95% (41,885 SNPs excluded), the minor allele frequency had to

be $0.01 (19,154 SNPs excluded), and the p-value for the Hardy-

Weinberg test of equilibrium had to be $1.061023 (6,317 SNPs

excluded). For the remaining 808,465 autosomal SNPs, the

average call rate was 99.5%. The concordance of blind duplicates

was 99.74%.

Population Stratification
Evidence for population stratification was obtained through

nonparametric clustering of genotypes using the R package

AWclust [35]. Two-dimensional projections from principal

coordinate analysis were drawn using R. From the set of 1,055

unrelated individuals, 37 individuals identified as outliers were

removed from analysis. We used 10,000 random autosomal SNPs

in linkage equilibrium for estimation of the allele sharing distance

matrix. Two additional individuals were removed due to missing

phenotype data, leaving 1,016 individuals for association analysis.

We also estimated the variance inflation factor for genomic

control.

Admixture
Individual admixture proportions were estimated using a panel

of 2,076 ancestry-informative markers (AIMs) assuming two

populations and uncorrelated allele frequencies with a 10,000

step burn-in and a 1,000 step chain using STRUCTURE 2.2 [36].

AIMs had a minor allele frequency $0.01 in both the HapMap

CEU and YRI samples, a difference in allele frequencies between

the HapMap CEU and YRI samples $0.6, and a pairwise r2#0.4

with other markers in the panel in both the HapMap CEU and

YRI samples.

Heritability
Heritability, with age and sex included as covariates, was

estimated using SOLAR under a polygenic model [37]. The final

sample for heritability estimation included 326 pedigrees,

consisting of a total of 1,006 individuals.

Imputation
Imputation was performed using MACH, version 1.0.16,

available at http://www.sph.umich.edu/csg/abecasis/MACH/

download/. We first retrieved the combined HapMap phase

II+III raw genotype files from http://ftp.hapmap.org/genotypes/

2009-02_phaseII+III/forward/non-redundant/. We filtered the

3,907,239 autosomal CEU SNPs and the 3,860,794 autosomal

YRI SNPs based on the inclusion of founders only, a minor allele

frequency $0.01, a SNP missingness rate#5%, and an individual

missingness rate#5%, leaving 2,327,370 CEU reference SNPs and

2,598,198 YRI reference SNPs. We inferred haplotype phases for

the reference data using the settings–rounds 50–states 200. We

conditioned imputation on the maximum-likelihood estimates of

the crossover map, which specifies the likely locations of haplotype

transitions, and the error rate map, which specifies unusual

markers based on a combination of discrepancies between the

reference panel and study sample data, genotyping error, and

recurrent mutation. We calibrated imputation error by determin-

ing the threshold of posterior probability that yielded a 10% error

rate for the CEU reference panel and a 5% error rate for the YRI

reference panel, averaged over 6,800 SNPs for which we masked

the experimentally determined genotypes. Imputed genotypes

were passed through quality control filters of a minor allele

frequency $0.01, a SNP missingness rate#10%, and a Hardy-

Weinberg test p-value $0.001. If a reference SNP yielded an

imputed genotype for both the CEU and YRI reference panels, we

preferentially accepted the genotype using the YRI reference

panel. We successfully imputed 1,506,100 SNPs using the YRI

reference panel and an additional 52,291 SNPs using the CEU

reference panel, for a total of 2,366,856 experimentally deter-

mined and imputed autosomal SNPs (Supplementary Table S2).

Quality control and data management were performed using

PLINK, available at http://pngu.mgh.harvard.edu/purcell/

plink/ [38].

Linear Regression
We analyzed only height measurements for individuals at least

20 years old, i.e., adult height. Height phenotypic measurements

were approximately normalized using a log10 transformation.

Normalized height was regressed on age, sex, and individual

admixture proportion using R. Standardized residuals were

regressed on genotype under the additive model using PLINK.

Transferability
Transferability was assessed using the same criteria for

replication: the same SNP has a significant association at

pƒ0:05 under the same genetic model with a consistent direction

for the effect size estimate with respect to the HapMap reference

allele [26]. We tested for transferability using two approaches. In

the first approach, we directly tested just the originally reported

SNP. In the second approach, we comprehensively evaluated all

HapMap SNPs in linkage disequilibrium with the originally

reported SNP. To accomplish this, we created a set containing all

Phase II HapMap SNPs bounded by the farthest SNPs with

pairwise r2
§0:3 to the originally reported SNP in the CEU or

CHB sample as appropriate. We determined marginal p-values for

each SNP in the set. Using the union-intersection test for the set,
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the null hypothesis is that no single SNP within the set is

significantly associated with adult height and the alternative

hypothesis is that at least one single SNP within the set is

significantly associated with adult height. Therefore, the p-value

for the set equals the minimum of the marginal p-values for all

SNPs in the set. We declared significance if the set pƒ0:05. We

did not correct for multiple comparisons across sets because the

null hypothesis for each set is different and therefore the tests

across sets do not constitute a family. Maps of linkage

disequilibrium were drawn using the R package snp.plotter [39].

Supporting Information

Figure S1 Quantile-quantile plot.

Found at: doi:10.1371/journal.pone.0008398.s001 (0.65 MB EPS)

Table S1 Complete results for all 152 stature loci.

Found at: doi:10.1371/journal.pone.0008398.s002 (0.28 MB
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Found at: doi:10.1371/journal.pone.0008398.s003 (0.02 MB
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