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SUMMARY
Precision or personalized medicine through clinical genome and exome sequencing has been described
by some as a revolution that could transform healthcare delivery, yet it is currently used in only a small
fraction of patients, principally for the diagnosis of suspected Mendelian conditions and for targeting
cancer treatments. Given the burden of illness in our society, it is of interest to ask how clinical genome
and exome sequencing can be constructively integrated more broadly into the routine practice of
medicine for the betterment of public health. In November 2014, 46 experts from academia, industry,
policy and patient advocacy gathered in a conference sponsored by Illumina, Inc. to discuss this
question, share viewpoints and propose recommendations. This perspective summarizes that work
and identifies some of the obstacles and opportunities that must be considered in translating advances
in genomics more widely into the practice of medicine.
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Introduction

Genetic testing is the analysis of human DNA, RNA, or proteins
to detect gene variants associated with certain diseases or
conditions; non-diagnostic uses include paternity testing and
forensics. Genetic testing methodology varies. Molecular
genetic tests study single genes or short lengths of DNA to
identify variations or mutations that lead to a genetic disorder.
Chromosomal genetic tests analyze whole chromosomes or
long lengths of DNA to detect large genetic changes such as
an extra copy of a chromosome. Finally, biochemical genetic
tests study the amount or activity level of proteins; abnorm-
alities in either can indicate changes to the DNA that result in

a genetic disorder [1]. Table 1 summarizes the various applica-
tions of genetic testing available today. The last decade has
seen an unprecedented pace of advancement in our ability to
sequence the genome. As the cost of sequencing decreases,
the opportunity to move from targeted sequencing to whole
exome sequencing (the analysis of all a person’s genes) and
then to whole genome sequencing that analyzes a person’s
entire genetic code becomes more accessible, particularly for
researchers. This article serves as a high level summary of a
Summit meeting in which the implications and obstacles of
integrating clinical genome and exome sequencing (CGES)
into the practice of medicine.
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The usefulness of CGES in clinical care – clinical utility – is a
highly debated topic and this article is intended to supple-
ment a wide-ranging discussion. We encourage readers to
explore the literature describing examples of CGES in diagnos-
ing rare conditions[2]; a PubMed search of all English-lan-
guage articles using the search terms ‘exome’ and ‘utility’
currently returns more than 200 results that describe the use
of exome sequencing to reveal conditions such as galactsiali-
dosis [3], ataxia syndromes including Joubert syndrome [4–6],
familial hypercholesterolaemia [7], and neurodevelopmental
disorders [8]. Among these results our colleagues have
explored the utility of exome sequencing in adult and pedia-
tric care and have found that while CGES today is not a
substitute for targeted sequencing of suspected genes, posi-
tive CGES results can be clinically useful in several ways,
particularly among well-selected patients for whom the like-
lihood for identifying the causative gene change may be as
high as 30% [9]. The dialogue on clinical utility of exome
sequencing will continue for many years. In our view, which
is certainly guided by the research and clinical application of
CGES pursued by many of us, clinical utility has been demon-
strated, particularly in the oncology field. Broadening utility
beyond oncology will take research, resources, and new
approaches in regulation.

From advocacy to ‘Free the Data’ to calls for more over-
sight, the regulation of genetic tests will also continue to
evolve. In the United States, three governmental agencies
regulate genetic testing. The Centers for Medicare and
Medicaid Services (CMS) regulate clinical laboratories, specifi-
cally educational requirements for technicians, quality control
of laboratory processes, and proficiency testing via the Clinical
Laboratory Improvement Amendments of 1988 (CLIA). The US
Food and Drug Administration (US FDA) regulates the effec-
tiveness and safety of genetic tests as medical devices under
the Medical Devices Amendments of 1976 to the Federal
Food, Drug, and Cosmetic Act. Genetic tests can come to
market as a commercial test ‘kit’ (a group of reagents pack-
aged and sold to multiple labs) or as a laboratory-developed
test (LDT) performed by a single laboratory. FDA has practiced
‘enforcement discretion’ over that latter for many years; how-
ever, citing the growing complexity and increasing risk asso-
ciated with LDTs, FDA has signaled that a shift toward greater
oversight is on the horizon [10]. The LDT industry including

the lobbying arm of the American Clinical Laboratory
Association are investing considerable resources to oppose
increased oversight. Their efforts include guiding legislation
to reduce the FDA’s authority and oversight of medical testing
[11,12]. Several leading opinions have been published to
inform this import discussion [13,14].

Additionally, the College of American Pathologists (CAP)
has developed a next-generation sequencing (NGS) checklist
for CAP-accredited laboratories which they cite as providing
‘another layer of detail’ to CLIA guidelines for NGS [15,16].
Finally, the U.S. Federal Trade Commission (FTC) regulates
advertising to ensure that consumers do not receive health-
related information that is false or misleading [17].

CGES and cancer care

The Summit focused on the non-oncological application of
CGES. CGES has been well-incorporated in cancer prediction
and therapy [18–26]. Gagan and Van Allen (2015) provide a
current review of high-throughput sequencing in the standard
clinical practice of oncology. In addition to assay methodology
and recommendations for sample choice, they point to three
examples of utility for clinicians: (1) diagnosis; (2) identification
of targeted therapy; (3) using NGS in the event a patient stops
responding to a targeted therapy with known resistance
mutations [24]. The success of sequencing in cancer care
stands largely on the shoulders of companion diagnostics.
The use of in vitro diagnostics (IVDs) to provide information
for the effective and safe use of a corresponding therapeutic
product means timely precision cancer therapy. Today’s can-
cer companion diagnostic market is considerable and grow-
ing. Table 2 illustrates current (as of December 2015) FDA-
cleared or approved companion diagnostics and their
intended use and indications for use. Furthermore, this suc-
cess has encouraged a shift in drug development toward
pipelines that feature co-development of a test and drug for
simultaneous submission to FDA. From this paradigm shift we
may bring a market correction of sorts to the therapeutic
landscape whereby molecular diagnostics come first followed
by assignment to a matching therapy [27].

The pathway for the translation and integration of genomics
from the laboratory into everyday medicine remains largely unde-
fined. In November 2014, 46 multidisciplinary stakeholders from

Table 1. Summary of genetic testing.

Test type Purpose description Current example(s)

Diagnostic testing To precisely identify a disease and assist in clinical
decision-making

Creatine kinase (CK) level testing for Duchenne muscular dystrophy

Predictive testing To predict the likelihood of developing a disease HTT gene test for Huntington disease; BRCA gene testing for breast cancer
Carrier testing To understand the likelihood of passing a genetic

disease to a child
CFTR gene testing for cystic fibrosis

Prenatal testing To identify disease in a fetus Expanded alpha-fetoprotein (AFP) for risk of neural tube defects, such as spina bifida
and Down syndrome

Newborn screening To determine if a newborn has a disease known to
cause problems in health and development

All states must screen for at least 21 disorders by law, and some states test for 30 or
more. Metabolic (e.g. classic galactosemia (GALT)), endocrine (e.g. congenital
hypothyroidism) and other disorders tested

Pharmacogenomics
(PGx) testing

To determine the optimal drug therapy and dose
given a person’s metabolic response

The vitamin K epoxide reductase complex subunit 1 (VKORC1) test for likely response
to the anticoagulant warfarin. TPMT gene testing for likely response to thiopurine
immunosuppressive therapies

Research testing To contribute to our understanding of underlying
cause of disease

Genome-wide association studies (GWAS) to determine the association of a variant
with a trait
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Table 2. List of FDA-cleared or approved companion diagnostic devices (in vitro and imaging tools).

Drug trade name (generic name) Device trade name Intended use (IU)/indications for use (IFU)

Tagrisso® (osimertinib) cobas® EGFR mutation test v2 To aid in identifying patients with NSCLC whose tumors have defined EGFR
mutations and for whom safety and efficacy of a drug have been established.

Keytruda® (pembrolizumab) PD-L1 IHC 22C3 pharmDx To aid in identifying NSCLC patients for treatment with Keytruda®
(pembrolizumab).

Iressa (gefitinib) therascreen® EGFR RGQ PCR kit To select patients with NSCLC for whom GILOTRIF® (afatinib) or IRESSA®
(gefitinib), EGFR tyrosine kinase inhibitors (TKIs), is indicated.

Xalkori (crizotinib) VENTANA ALK (D5F3) CDx assay To aid in identifying patients diagnosed with non-small cell lung carcinoma
(NSCLC) eligible for treatment with XALKORI® (crizotinib).

Erbitux (cetuximab); Vectibix
(panitumumab)

The cobas® KRAS mutation test To aid in the identification of CRC patients for whom treatment with Erbitux®
(cetuximab) or with Vectibix® (panitumumab)

Lynparza™ (olaparib) BRACAnalysis CDx™ Results of the test are used as an aid in identifying ovarian cancer patients with
deleterious or suspected deleterious germline BRCA variants eligible for
treatment with Lynparza™ (olaparib).

Erbitux (cetuximab); Vectibix
(panitumumab)

therascreen KRAS RGQ PCR kit To aid in the identification of CRC patients for treatment with Erbitux
(cetuximab) and Vectibix (panitumumab) based on a KRAS no mutation
detected test result.

DAKO EGFR PharmDx kit To aid in identifying colorectal cancer patients eligible for treatment with
Erbitux (cetuximab) or Vectibix (panitumumab).

Exjade (deferasirox) Ferriscan To measure liver iron concentration to aid in the identification and monitoring
of non-transfusion-dependent thalassemia patients receiving therapy with
deferasirox.

Gilotrif (afatinib) therascreen EGFR RGQ PCR kit To select patients with NSCLC for whom GILOTRIF (afatinib), an EGFR tyrosine
kinase inhibitor (TKI), is indicated

Gleevec/Glivec (imatinib mesylate) DAKO C-KIT PharmDx To aid in the differential diagnosis of gastrointestinal stromal tumors (GIST).
After diagnosis of GIST, results from c-Kit pharmDx may be used as an aid in
identifying those patients eligible for treatment with Gleevec/Glivec (imatinib
mesylate).

Herceptin (trastuzumab) INFORM HER-2/NEU Indicated for use as an adjunct to existing clinical and pathologic information
currently used as prognostic indicators in the risk stratification of breast cancer
in patients who have had a priori invasive, localized breast carcinoma and who
are lymph node-negative.

PATHVYSION HER-2 DNA Probe Kit Indicated as an aid in the assessment of patients for whom herceptin
(trastuzumab) treatment is being considered (see herceptin package insert).

PATHWAY ANTI-HER-2/NEU (4B5)
rabbit monoclonal primary
antibody

Indicated as an aid in the assessment of breast cancer patients for whom
Herceptin treatment is being considered.

INSITE HER-2/NEU kit Indicated as an aid in the assessment of breast cancer patients for whom
Herceptin (Trastuzumab) therapy is being considered.

SPOT-LIGHT HER2 CISH kit Indicated as an aid in the assessment of patients for whom Herceptin
(trastuzumab) treatment is being considered.

Bond Oracle Her2 IHC system Indicated as an aid in the assessment of patients for whom herceptin
(trastuzumab) treatment is being considered.

HER2 CISH PharmDx Kit Intended for use as an adjunct to the clinicopathologic information currently
used for estimating prognosis in stage II, node-positive breast cancer patients.

INFORM HER2 DUAL ISH DNA
probe cocktail

Indicated as an aid in the assessment of patients for whom Herceptin
(trastuzumab) treatment is being considered.

Herceptin (trastuzumab); Perjeta
(pertuzumab); Kadcyla (ado-
trastuzumab emtansine)

HERCEPTEST Indicated as an aid in the assessment of breast and gastric cancer patients for
whom Herceptin (trastuzumab) treatment is being considered and for breast
cancer patients for whom PERJETA (pertuzumab) treatment or KADCYLA (ado-
trastuzumab emtansine) treatment is being considered (see Herceptin, PERJETA,
and KADCYLA package inserts).

HER2 FISH PharmDx kit HER2 IQFISH pharmDx is indicated as an aid in the assessment of breast and
gastric cancer patients for whom Herceptin (trastuzumab) treatment is being
considered and for breast cancer patients for whom Perjeta (pertuzumab) or
Kadcyla (ado-trastuzumab emtansine) treatment is being considered (see
Herceptin, Perjeta, and Kadcyla package inserts). For breast cancer patients,
results from the HER2 IQFISH pharmDx are intended for use as an adjunct to the
clinicopathologic information currently used for estimating prognosis in stage II,
node-positive breast cancer patients.

Mekinist (tramatenib); Tafinlar
(dabrafenib)

THxID™ BRAF kit Intended to be used as an aid in selecting melanoma patients whose tumors
carry the BRAF V600E mutation for treatment with dabrafenib [Tafinlar] and as
an aid in selecting melanoma patients whose tumors carry the BRAF V600E or
V600 K mutation for treatment with trametinib [Mekinist].

Tarceva (erlotinib) cobas EGFR mutation test Intended to be used as an aid in selecting patients with NSCLC for whom
Tarceva® (erlotinib), an EGFR tyrosine kinase inhibitor (TKI), is indicated.

Xalkori (crizotinib) VYSIS ALK break spart FISH probe
kit

To aid in identifying patients eligible for treatment with Xalkori (crizotinib).

Zelboraf (vemurafenib) COBAS 4800 BRAF V600 mutation
test

Intended to be used as an aid in selecting melanoma patients whose tumors
carry the BRAF V600E mutation for treatment with vemurafenib.

Source: United States Food and Drug Administration.
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academia, industry, clinical delivery, policy, and patient advocacy
gathered to assess the challenges of genomic medicine, and to
generate recommendations to guide the translation of genomic
discoveries into the everyday, non-oncological practice of medi-
cine. The goal of this effort was to assess the current state of
clinical applications of genetic and genomic technology, identify
the evidence gaps necessary to inform the appropriate utilization
of CGES, and propose recommendations thatmight fill these gaps.
Between November 2014 and June 2015, working groups com-
municated regularly to refine recommendations for what would
be needed to facilitate the translation of whole genomic sequen-
cing into everyday, non-oncological practice of medicine. The
resulting report identifies scientific and policy areas where addi-
tional attention and evidence development are needed, and pro-
poses a number of recommendations, including: (1) generating
evidence that quantifies medical utility and cost-effectiveness; (2)
customizing regulation to specific use cases; (3) supporting inno-
vative payment models to integrate research and development
with clinical care; (4) promoting scalable and iteratively designed
‘learning’ data systems; and (5) educating providers and patients
about both the limitations and potential of genomics in medicine.
The topic areas and working groups were organized around: (1)
clinical utility; (2) regulation; (3) reimbursement; (4) data manage-
ment; and (5) provider and patient education.

The stakeholders have been described above as ‘multidis-
ciplinary’. The Summit also benefitted from the international
perspective that several attendees brought from their clinical
practices and patient experiences in Australia, Canada, Italy,
and the Republic of Singapore. Nonetheless, the combination
of our limited time together in conference and the similarities
among the challenges we explored, resulted in a report with a
decidedly US-centric perspective. However, we believe that
the recommendations and perspectives presented here are
not wholly unique to American healthcare but may also be
useful abroad.

Clinical utility

At the present time, clinical utility is defined idiosyncratically in
the non-oncological space by a diverse range of stakeholders:
patients, parents (for pediatric patients), physicians, genetic
counselors, hospital administrators, health-plan administrators,
and payers. The definition of utility in clinical genetics ranges
from definitively informing medical management to produce a
positive health outcome, to satisfying the need for patients and
their families to have a diagnosis, regardless the outcome. Is it
medically useful to identify a molecular diagnosis in a child
whose parents have pursued a diagnostic odyssey? [28] In
some cases it may be [29]. For those many cases that CGES
does not reveal additional medical benefit to the child, objective
benefits to the family may be having the opportunity to identify
new treatment options, cease costly medical testing that will not
prove beneficial, enact reproductive planning for future children,
or provide a family with new research opportunities in partner-
ship with others with similar mutations.

However defined, clinical utility is difficult to quantify in
genomics, in large part because the current and potential
usage of genomics in medicine is so varied. CGES is principally
used in assessing the causes of rare, undiagnosed diseases [30],

where it is difficult to aggregate patients with the same condi-
tion. Emerging categories of genomic sequencing usage
include broader pre-conception screening for recessive condi-
tions, non-invasive pre-natal screening (NIPS), pharmacoge-
nomic variation with decision support, and pre-dispositional
testing for both Mendelian and common complex disease risk
in ostensibly healthy individuals [31]. In each of these examples,
there are issues of downstream medical costs and iatrogenic
harm that must be considered. In whatever subset of indivi-
duals is considered for genomic testing, the probabilistic nature
of genetic risk information means that elevated risk will be
identified in persons who will never develop the condition,
and reduced risk will be identified in persons who will develop
the condition. Neither healthcare providers nor patients are
skilled at managing probabilistic concepts of risk and only a
modest amount of empirical data on utilization or downstream
consequences are currently available. Collecting the data to
address these questions will require significant research invest-
ment and should be high priority for funding agencies. Data
collection along these lines is already underway through
numerous NIH consortia and projects [32,33], and will be accel-
erated by the Precision Medicine Initiative [34]. However, defin-
ing clinical utility will be a long-term enterprise and the
continuing evolution of both technology andmedical discovery
will mean that such research will continually lag behind the
latest discoveries, particularly as discoveries in epigenetics,
gene expression, proteomics, and metabolomics are layered
upon increasing knowledge about genome sequencing.
Providers and patients will thus chronically be in the position
of attempting to utilize medical genomics with an under-devel-
oped evidence base. This is, to a large extent, inherent in the
practice of medicine of all types; for example, whenever provi-
ders customize an amalgam of evidence-based knowledge and
face-valid guesswork for a given patient, and attempt to com-
municate uncertainty while simultaneously (and often para-
doxically) projecting confidence.

The use of genomics in medicine will exacerbate this issue
because genomics brings with it a social narrative of exagger-
ated determinism. It is also a field of medical science that is
changing with particular rapidity and one in which providers
feel particularly underprepared [35]. While practitioners can be
expected to adjust to genomics as they have to prior techno-
logical advances [36], this adjustment may be accelerated by
the creation of checklists (or the virtual equivalent embedded
in electronic decision support) that reassure providers and
patients of the options and uncertainties inherent in genomic
medicine. One could envision checklists developed for differ-
ent types of providers and specialties, for a variety of indica-
tions, and attuned to patients and their clinical profiles. This
relatively simple solution could be subsequently adapted into
broader, more robust educational tools such as pre-counseling
videos to expand the knowledge of the patient and provider,
and to support their shared decision-making as genomic med-
icine is integrated into clinical care.

A pre-test checklist could frame communication strategies
for providers and to educate patients about genomic testing,
including: (1) the analytic and interpretive limitations of the
testing so patients are fully informed and can confidently
decide if they want to proceed; (2) the potential implications

4 S. K. DELANEY ET AL.
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of test results for biological relatives; and (3) the extent of
variant data available from a particular test, the wide range of
evidence supporting those variants, and the choices and impli-
cations of accepting or rejecting that information. A post-test
checklist or algorithm, perhaps akin to the American College
of Medical Genetics and Genomics ACTion (ACT) sheets avail-
able online for the management of rare metabolic conditions
[37], could help the provider and patient focus on: (1) what to
do if a definitive diagnosis is made; (2) next steps if a potential
diagnosis is made; (3) next steps if nothing is found; (4) how to
approach secondary findings; (5) how to approach the
dynamic nature of the analysis of the patient’s genome; and
(6) development of a re-analysis strategy with the patient and/
or family members.

The communication of genetic information from provider
to patient is an exchange influenced by many variables.
Provider readiness and what a clinician deems is relevant to
their patient’s case may determine the utility of the genetic
test. Similarly, patient expectations of the genetic information
may determine how much information they ultimately desire
and subsequently receive. Thus, the communication of sec-
ondary findings or findings that predict diseases or disorders
for which no cure is presently available (non-actionable con-
ditions) must be anticipated by the provider and counseling
around these issues provided to the patient and family in each
clinical case, whether facilitated by test checklists as described
above or by other means.

Finally, as genetic data accumulates within our healthcare
system there is a great deal discussion about protecting it
from unauthorized access. The topic of privacy protection is
discussed in more detail in a later section, but it should be
noted that the utility of clinical genomic data will be closely
tied to a patient’s confidence in the secure management of
their genetic information. Given our continually evolving
understanding of genomic information for clinical application
we have an opportunity to serve those patients whose data-
sharing preferences change over time.

Regulation

Access to medical technologies is regulated by the FDA. Drug,
device, and diagnostic manufacturers must submit evidentiary
support to FDA demonstrating the safety, efficacy, and quality
of their product to receive pre-market approval.

In the area of genomic medicine, the FDA previously
adopted a position of enforcement discretion, allowing pro-
gress to proceed under the umbrella of LDTs [14]. More
recently, the FDA has undergone institutional reorganization
and published several guidances [38], and has gradually issued
approvals for specific use cases in genomic medicine [39].
However, FDA plans for oversight of LDTs in the realm of
genomics are widely regarded as flawed because the FDA
may lack statutory authority to regulate LDTs, has an anti-
quated and unwieldy medical device framework that is not
well aligned with the rapidly changing technical and evidence
base in genomics, and may inhibit discovery and innovation –
in the absence of evidence of harm – by insisting upon pre-
market review of both analytic and clinical validity [9,13].

Use cases

Rather than conceptualizing genetic and genomic testing as
a device, the output of a genetic test should be regarded as
information that can guide clinical decision-making in com-
bination with other patient-specific, non-genetic information
at multiple points along the clinical care continuum, from
preventive to targeted treatment. In this context, it may be
useful to clearly define various ‘use cases’ across that con-
tinuum and consider treating them distinctly with highly
specific guidelines for the documentation of analytic validity
and subsequently, clinical validity. Additionally, given the
increasing accessibility and decreasing cost of testing, it is
also time to more clearly distinguish genetic information
used for ancestry or non-medical traits from genetic infor-
mation intended for medical use. Certainly some genetic
tests may reside in both medical and non-medical cate-
gories, such as the personal use of genetic information
associated with obesity, exercise, nutrition, and other well-
ness topics.

Up until the debate around FDA’s jurisdiction over LDTs,
the Agency’s position that genetic tests are medical devices
has gone largely undisputed. The LDT discussion will stretch
into 2016 and the outcome will hinge on whether FDA or the
healthcare industry and biomedical research lobbies put forth,
and win with, a compelling argument. Today, FDA stratifies
medical devices across three classes reflecting their perceived
degree of risk. Class I devices pose the lowest level of risk and
are subject only to general controls, which include good
manufacturing practices, record keeping, and filing specified
reports with the agency [40]. Class II devices pose somewhat
greater risk and are subject to additional ‘special controls’,
such as performance standards, post-market surveillance,
patient registries, and device-specific guidances [40]. Class III
devices are considered to pose the greatest risk and compa-
nies introducing new types of Class III devices must submit an
application for pre-market approval (PMA) to the agency
[40,41].

Clinical utility as a concept should focus on establishing
usefulness and value for patients. Therefore, the demonstra-
tion of clinical utility does not, and perhaps cannot, depend
on the subjective view of the individual patient. While analy-
tical validity (test is accurate and reliable) and clinical validity
(result is medically meaningful) are essentially straightforward
metrics, whether the test improves healthcare (clinical utility)
is fraught with subjective discordance across the field of med-
ical genetics. Clinical utility as a prerequisite for Medicare
coverage is a long-standing and accepted practice; however
it struggles align with the vision of personalized medicine.
Regardless, demonstrating the clinical utility of any therapeu-
tic or medical device is in the best interest of patient health
and the cost of their health management. Precision medicine
will simply have to view the burden of evidence gathering as
more than convincing regulators and latent adopters and
instead approach it from the patient perspective.

There may be many ways to do this, with just one formula-
tion illustrated by Figure 1 where place of use cases into the
FDA risk class structure as based on (1) our estimate of the
risk/benefit trade-off in these use cases; (2) patient expectation
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of the test; and (3) alternatives to the use case, e.g. specific
test, family history, likely impact on health outcome. By apply-
ing varying degrees of risk and benefit to various categories of
CGES and placing them into appropriate evidentiary thresh-
olds required to mitigate risk, greater progress may be made
in the conversation around regulation.

Reimbursement

Reimbursement decisions for new technologies are influenced,
but not wholly driven by FDA approval. Several factors are
considered for coverage decisions (what gets covered) and
reimbursement decisions (how much gets covered), including
patient interest/consumer demand; age or pathology-specific
applications; inpatient/outpatient status; the opinions of pro-
fessional organizations; integration into current clinical guide-
lines; cost-effectiveness; health outcomes; and strength of the
evidence supporting a test’s analytical and clinical validity and
its clinical utility [42]. Because incontrovertible evidence is
almost never available, newer technologies such as genetic
testing may be reimbursed inconsistently or not at all. For
example, a few years ago, the AlloMap test for cardiac allograft
rejection risk (which was not FDA-approved), and a pharma-
cogenomic test for CYP2C19 effect on clopidogrel (which was
FDA-approved) was reviewed by a number of insurers. Two
payers provided coverage for these tests, while two different
payers considered both tests to be investigational and
declined to cover them [42].

Today, genomic testing in the non-oncological space is
inconsistently covered throughout the country, which makes
it extremely complicated for clinicians to apply such testing in
the clinical arena.

It is difficult to predict how this may be resolved, as payers
seem to be asking for evidence from clinical utility studies that
will take considerable time to accrue. One possibility is that
public and private payers could collaborate to expand the use
of ‘coverage with evidence development’ programs [43,44]. In
this way, data can be collected under research protocols while
tests are covered temporarily by third-party payers until

sufficient evidence can be gathered to make informed deci-
sions about more permanent coverage. ‘CED programs have
been pursued for many years’. Medicare CED programs have
demonstrated both success and failure, e.g. pharmacoge-
nomic testing for warfarin response (Decision Memo CAG-
00400 N). These performance-based, risk-sharing arrange-
ments where price and level of coverage is linked to clinical
effectiveness have proven challenging to implement given
their cost and the difficulty of data collection. However,
these programs continue to occur globally and Medicare has
demonstrated interest in continuing these and similar effort
by issuing guidances in 2012 and 2014 that includes a recom-
mendation to partner with the Agency for Healthcare Research
and Quality (AHRQ) to conduct CED activities and the specific
expectations of a CED study and expected deliverables
[45–47].

In recent years a parallel model that focused on genetic
testing was fostered by the Medicare contractor Palmetto GBA;
the model is called MolDx. For new tests MolDX performs tech-
nical assessments to determine whether the test meets coverage
requirements. MolDx technical assessments require test devel-
opers to submit evidence demonstrating the analytical validity,
clinical validity, and clinical utility for each diagnostic test. MolDx
will accept a number of different forms of evidence demonstrat-
ing clinical utility, each weighted differently: published peer-
reviewed articles, RCTs or other well-designed controlled trials,
cohort and case study analysis, and articles that are ‘accepted for
publication’. Positive assessments are published and coverage
determined. If the assessment is negative, MolDx will explain
why to the test developer. Workshop attendees at a 2012 NIH-
sponsored workshop applauded the Palmetto initiative and dis-
cussed whether it could be implemented as a national program
to determine coverage for genetic tests. They conceded how-
ever that private payers would not be interested in funding
similar technical assessments [48].”

Another possibility is for employers to engage more fully
with their workforce to support genomic medicine. As
employers engage self-funded insurance plans, they have
greater incentives to encourage healthy behaviors among

Figure 1. Defining CGES use cases along the clinical care continuum and appropriate evidentiary thresholds for each.
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their employees; self-insurance also permits employers to cus-
tomize plans depending on the needs and desires of their
workforce [49]. For example, in 2014 more than 70% of
employers offering health benefits also provided at least one
wellness program, such as weight loss programs, gym mem-
bership discounts or on-site exercise facilities, or personal
health coaching [50]. Research demonstrating a link between
personal genetic risk information in motivating positive health
behaviors has not proven promising [51–53]. However, if new
evidence continues to accrue demonstrating that genomic
testing is indeed useful in promoting healthy behaviors; how-
ever [54], employers might encourage conversations between
employees and their physicians to explore these options.

As has been noted elsewhere [55,56], the Affordable Care
Act allows and encourages employers to tie the cost of insur-
ance plans to participation in wellness programs, while the
Genetic Insurance Nondiscrimination Act prohibits employers
from learning about genetic information. Thus, this legal mis-
alignment may require particularly creative solutions from
employers who seek to integrate genomics information into
corporate wellness programs.

Data management

Today’s most promising applications of CGES include NIPS,
precision cancer care, diagnosis of rare diseases, and pharma-
cogenomics; yet, as discussed in the introduction, the collec-
tive ability to deliver value from the technology lags far
behind the development of the technology itself. Integrating
genomics into the everyday practice of medicine will require
integrated, scalable, and reliable information systems that
resemble other critical information infrastructures, rather
than bespoke systems cobbled together from vastly divergent
research tools. Furthermore, those systems must present
genomic information in the medical record in clinically mean-
ingful ways (e.g. not simply scanned into notes).

Today’s data management and scalability challenges reflect
missing standards, lack of modern data science, and inconsis-
tent security practices, all of which prevent industrial-grade
solutions. While genomic data is voluminous, it lacks variety,

velocity, and veracity compared to other fields. The number of
analysts working with a given dataset is small, as is the num-
ber of transactions on any given genome. The data are neither
fused with other data types (e.g. clinical or environmental) nor
networked with other cases. We must begin to measure the
value of each new subsequent genome in the context of the
collective understanding of genetics and disease and the pre-
dictability of genomic tests, thereby harnessing a ‘network
effect’ with the collection of large numbers of genomes linked
to clinical data (see Figure 2).

There is a real opportunity to construct an environment
that creates and sustains virtuous cycles of research, industrial,
and clinical activity, as illustrated in Figure 3. This will require
recruiting patients and their data at the point of care to
generate a more integrated view of genomic data science
and to reinforce the interdependencies between research,
product development, and clinical testing. Giving patients
the option to donate their data at the point of care will enable
these virtuous cycles. An example in the research arena is the
National Human Genome Research Institute-funded Clinical
Genome Resource (ClinGen) GenomeConnect patient portal
that allows patients to securely share and store detailed gen-
otypic and phenotypic information for the advancement of
rare disease research [57].

The data science of genome interpretation should be
rapidly modernized. For example, we should phase out use
of exchange formats as data models and text files as data
services and move toward state-of-the-art application pro-
gram interfaces (APIs) for data services, such as those
under development by the Global Alliance for Genomics and
Health [58]. There is an urgent need to improve feature extrac-
tion from clinical data and to fuse these data with other data,
such as environmental and patient-generated data, including
data from wearable sensors that automatically collect data
about behaviors and the environment. Those data can then
be made available to analysts and algorithms in an event-
driven manner to promote dynamic analytics and reporting.

There is also a need to modernize the governance of
genomic interpretation systems. In many data information
systems that serve as critical infrastructures, there is a core,

Figure 2. Harnessing the network effect of genome sequencing.
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regulated production system as well as a separate develop-
ment tier that allows experimentation and innovation.
Between these two system tiers is a change management
process that governs which experimental features are elevated
and implemented into the production environment. This type
of ‘dev-ops’ approach allows for standardization at the pro-
duction level, but does not inhibit experimentation. The
change management process is an area where regulators can
have a voice in what is delivered clinically to patients.

Finally, as many have argued, there is an urgent need to
eliminate data silos and promote data sharing [57]. Shifting
away from the notion of institutional data ownership (includ-
ing provider, industry, and academic) to the reality of indivi-
dual data ownership and engaging patients as partners in
research is essential to creating the incentives that will sup-
port a sustainable data enterprise for genomic medicine.
Companies such as PatientsLikeMe promote sharing models
in the hope of accelerating research. Indeed, PatientsLikeMe
has signed sharing agreements with FDA and AstraZeneca to
advance research in drug safety, lupus, diabetes, and other
areas.

Of equal importance is the need to instill a considerable
measure of confidence and trust in the data systems we build.
We live in an era of data breaches and stolen identities that
can cause tremendous financial and reputational losses. The
protection of genomic data is quickly emerging as its own
research field, with academic thought being invested to bal-
ance the need for genomic data with the need for retaining
one’s autonomy, what Erlich et al. describe as ‘a solution in
which researchers and participants both win’ [59].
Genealogical triangulation, exploiting meta-data, and identity
tracing by phenotypic prediction are just some of the methods
that can be employed to compromise genomic data sharing
by subjects [60,61]. Despite several existing layers of protec-
tions, including GINA and HIPAA in the United States, the
European Union privacy directive (Directive 95/46/EC, 1995),
and the use of institutional review boards and data access
committees in research, the pace and increasing size of data-
sets makes data protection challenging. Coupled with

solutions such as homomorphic encryption [62], providers
and researchers must clearly inform their patients and subjects
about the potential privacy risks when sharing genetic and
genomic data.

Provider and patient education

Why are today’s healthcare providers not more rapidly incor-
porating CGES into their practice of medicine? In some cases,
it is because they are unaware of new genomic tools and tests,
and when they are aware, many lack self-confidence about
their own knowledge and skills for using them [35,63]. Many
providers are also concerned about the high cost of genomic
tests, the lack of reimbursement, and skepticism about the
validity and utility of the tests currently being offered [64]. As
noted earlier, a robust genetics education for providers will be
essential to address these challenges. Moreover, professional
guidelines around genomics must be adopted. Overcoming
these challenges will only come as the case is made for the
clinical utility and cost effectiveness of genomics in patient
care. In the meantime, the teaching of medicine should reject
the historical exceptionalism that has surrounded genomics,
present genetics as foundational in the basic science years,
and model the practice of genomic medicine at every oppor-
tunity during clinical training. At the same time educational
programs should include broader historical perspectives on
genetics in medicine and society. The troubled history of the
human genetics in the first half of the twentieth century
directs us toward caution and vigilance.

It has also been suggested that trainees or practicing pro-
viders who obtain genetic testing themselves may have
enhanced educational engagement around genomics, and
many medical schools are considering incorporating such pro-
grams into their genetics curricula [65]. This fits well with the
traditional ‘learning by doing’ physician education model.
However, pilot projects that have explored such programs
have generated mixed results [63,66–69], and at least one
institution considered and rejected the idea due to concerns

Figure 3. Virtuous cycles possible for genomic data.
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about coercion, privacy, conflicts of interest, and safety mon-
itoring [70].

‘Indeed, asking medical students to undergo genetic test-
ing in order to learn about genomics could be considered a
form of genetic exceptionalism. Furthermore, approaching a
medical student to request that they be unnecessarily treated
with a medical technology or therapeutic is inappropriate.’

At the same time, patients are playing a more substantive
role in their own health care and their engagement with
precision medicine in general, and genomics specifically,
may shape how these concepts are realized. Patients are
increasingly seeking ways to empower themselves and their
families with information obtained outside of interactions
with their healthcare practitioners, and many are embracing
self-monitoring systems that measure physical activity, sleep
patterns, weight, and even blood chemistry [71,72]. At pre-
sent, only a small fraction are taking advantage of relatively
new opportunities to access their medical records [73,74], but
patient portals that take two-way communications beyond
appointment setting and billing and into clinical discussions
may present new, appropriate opportunities to increase
engagement of patients with genomics. Beyond these steps,
there is an expectation that patients will increasingly share
their experiences, their clinical data, and even their genomic
data among themselves and with researchers. Sharing is
hampered; however, by technological limitations, legal

protections, and social issues. Recent legislation (Title 42 of
the Code of Federal Regulations (CFR) Public Health, Part
493) requiring laboratories to make test results available to
consumers is a positive step toward personal data steward-
ship, but it is unclear whether that right would extend to
genomic data, particularly unanalyzed (raw) data. A critical
part of advancing genomic aspects of precision medicine is
to educate and engage not only providers, but consumers of
health care as well. Providing patients/consumers access to
their health data coupled with high-quality educational mate-
rials is the first step.

Expert commentary

The Summit and subsequent conference calls of the respective
working groups offered a productive opportunity to gather
stakeholders from multiple disciplines to compare and con-
trast views on the current challenges to the integration of
clinical genomics into the practice of medicine. At the close
of the conference attendees were asked to estimate the num-
ber of years until such time that CGES is fully integrated into
the care of most Americans; the overall consensus was 8 to 10
years. It remains to be seen whether this is sufficient time to
accrue the evidence for clinical utility, revise and build a
nimble and appropriate regulatory and policy framework,
stand up a payment system that fosters medical innovation,

Figure 4. Stakeholders collaborating to catalyze precision medicine.
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unleash the power of large datasets, and sufficiently educate
providers and patients.

The time-frame for integration is no longer predicated on
scientific development; rather integration depends on con-
certed efforts among and between the healthcare stakeholders
in precision medicine. Providers, payers, and patients along
with policy makers and regulators, industry and academia
share the expertise and interest to push toward clinical care
powered in part by genetics and genomics. Figure 4 illustrates
our recommendations juxtaposed with these stakeholders to
demonstrate where they can collaborate on activities that sup-
port these and similar recommendations.

This figure is not exhaustive. There may be broader opportu-
nity for collaboration among stakeholders on these recommen-
dations, for example, academia can certainly contribute to the
demonstration of utility in a variety of ways, including the study
of economic benefit of CGES. The principal purpose of this figure
is to illustrate that cross-sector cooperation is imperative to
expanding the use of CGES in medicine at a useful pace.

Five-year view

The momentum of several efforts, including the Precision
Medicine Initiative, has opened a window of opportunity to
integrate genomic medicine into the clinical setting. If these
efforts can be complemented by well-orchestrated, collaborative
efforts by a range of stakeholders pursuing activities designed to
accelerate a shared vision of precision medicine, significant gains
in genome-informed clinical care may be feasible by the close of
this decade. Healthcare systems, providers and payers, employ-
ers and patient consumers, and industry should coalesce around
meaningful opportunities such as patient education, concor-
dance in coverage policy, and clinical guidelines to promote
wider adoption.

The last decade saw great strides in our understanding of
disease and pharmacogenomics. It also marked the movement
of genetics and genomics into mainstream vernacular. It is our
hope that the next decade of precision medicine will be
characterized by equal parts progress in discovery, technol-
ogy, and clinical implementation. This progress will be mea-
sured by demonstrated access to CGES across different
populations as we move from affluent early adopters to

patients often underserved by the healthcare system, and
improved health outcomes.
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