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Abstract
Background—Association analysis identified the homeobox transcription factor, ENGRAILED
2 (EN2), as a possible Autism Spectrum Disorder (ASD) susceptibility gene (ASD [MIM 608636];
EN2 [MIM 131310]). The common alleles (underlined) of two intronic SNPs, rs1861972 (A/G) and
rs1861973 (C/T), are over-transmitted to affected individuals both singly and as a haplotype in three
separate datasets (518 families total, haplotype P=0.00000035). Methods: Further support that
EN2 is a possible ASD susceptibility gene requires the identification of a risk allele, a DNA variant
that is consistently associated with ASD but is also functional. To identify possible risk alleles,
additional association analysis and LD mapping were performed. Candidate polymorphisms were
then tested for functional differences by luciferase (luc) reporter transfections and Electrophoretic
Mobility Shift Assays (EMSAs). Results: Association analysis of additional EN2 polymorphisms
and LD mapping with Hapmap SNPs identified the rs1861972-rs1861973 haplotype as the most
appropriate candidate to test for functional differences. Luc reporters for the two common
rs1861972-rs1861973 haplotypes (A-C and G-T) were then transfected into human and rat cell lines
as well as primary mouse neuronal cultures. In all cases the A-C haplotype resulted in a significant
increase in luc levels (P<.005). EMSAs were then performed and nuclear factors bound specifically
to the A and C alleles of both SNPs. Conclusions: These data indicate the AC haplotype is functional
and together with the association and LD mapping results support EN2 as a likely ASD susceptibility
gene and the A-C haplotype as a possible risk allele.
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INTRODUCTION
Autism Spectrum Disorder (ASD) is a polygenic disorder affecting CNS development 1,2.
Individuals with ASD display deficits in language, emotional reciprocity as well as increased
repetitive behaviors and movements. Although strong evidence for a genetic contribution to
ASD exists, few causative genetic defects have been implicated in the etiology of the disorder
3-9.

Our previous analysis has focused on EN2, an important regulator of CNS development10-13.
EN2 maps to the distal portion of chromosome 7 (7q36.3) and is encoded by two exons and a
single 3.5kb intron spanning 8.1kb of genomic DNA. EN2 association was tested previously
in nuclear pedigrees obtained from the Autism Genetic Resource Exchange (AGRE) and the
NIMH. The pedigrees have at least two siblings diagnosed with ASD and can also include
unaffected siblings.

Two intronic EN2 SNPs, rs1861972 and rs1861973, are significantly associated with ASD
individually and as a haplotype under both a narrow (autism) and broad (autism, Asperger's
syndrome or Pervasive Developmental Delay-Not Otherwise Specified) phenotypic definition.
The common alleles for both SNPs (A-rs1861972; C-rs1861973) are over-transmitted to
affected individuals and under-represented in unaffected siblings. These results were observed
in an original dataset of 167 families (AGRE I, rs1861972-narrow: P=.026, broad: P=.016;
rs1861973- narrow: P=.008, broad: P=.012; rs1861972-rs1861973 haplotype, narrow: P=.
0009, broad: P=.0017) 14. Association was then replicated in two separate datasets (AGRE II,
222 families, haplotype, narrow: P=.0048, broad: P=.0016 and NIMH, 129 families, haplotype,
narrow: P=.0463, broad: P=.0431). When all three datasets were combined strong evidence
for association was observed (518 families, haplotype, narrow: P=.00000065; broad: P=.
00000035)14,15. Rs1861972 and rs1861973 display strong inter-marker LD with each other in
these three datasets (D'=.903, r2=.767). In the combined three datasets the frequencies of the
common A and C alleles for rs1861972 and rs1861973 both individually and as a haplotype
are ~72% (rs1861972 A allele- 73%, rs1861973 C allele- 72%, A-C haplotype- 71%). Four
other groups have reported some association for EN2 with autism in datasets of different
ethnicities: a Northern French population 16, one of largely Western-Northern European
descent 17, and two Chinese datasets 18,19. However, polymorphic and allelic differences have
been observed between these studies and our association data, suggesting that underlying
causative genetic variant(s) may vary between datasets and ethnicities. Although many
different rare and common variants are likely to contribute to ASD susceptibility, these data
are consistent with EN2 being a likely ASD susceptibility gene. However further support for
this possibility requires the isolation of a risk allele, an associated polymorphism that affects
the expression or activity of EN2.

We expect candidate risk alleles to be in strong LD with rs1861972 and rs1861973 and to
display at least as significant association with ASD as the A-C haplotype under both diagnoses.
Our prior re-sequencing, association, and LD mapping data identified the rs1861972-
rs1861973 A-C haplotype as a candidate for the EN2 risk allele. Previously 16 additional
EN2 polymorphisms were typed in the AGRE I dataset. Only the intronic SNPs demonstrated
high D' with rs1861972 and rs1861973, while one intronic SNP, rs2361688 (Minor Allele
Frequency (MAF) = 27%), displayed high r2 (rs1861972 = .730; rs1861973 = .807). Re-
sequencing of the intron identified one new SNP with a MAF of ~1%. Association analysis
for all 16 EN2 polymorphisms demonstrated that none of them were as strongly associated as
rs1861972 or rs1861973 individually or as a haplotype. Rs2361688 and another intronic SNP
(rs3824068) displayed minimal association but only under one diagnostic criterion
(rs2361688: narrow P=.13, broad P=.04; rs3824068: narrow P=.04, broad P=.10)15. This
analysis identified the rs1861972-rs1861973 haplotype as one possible candidate risk allele
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but it was unknown whether additional polymorphisms were in strong r2 with either associated
SNP. We now address this possibility and provide additional genetic and molecular data
implicating the rs1861972-rs1861973 haplotype as a functional variant that may increase ASD
risk.

MATERIALS AND METHODS
Hapmap

CEU Hapmap genotypes for rs1861973 were obtained from the Hapmap consortium. All other
genotypes were directly acquired from Hapmap (PhaseII, January 2007, NCBI: dbSNP b125).
Haploview program (version 4.0) determined inter-marker LD relation between CEU Hapmap
SNPs and rs1861973. For other datasets, LD data was directly downloaded from the Hapmap
website.

Genotyping, association and LD analysis
Details concerning the genotyping, error checking, LD, and association analysis for eight
EN2 3' polymorphisms typed as part of this analysis are available as Supplemental Information.
The AGRE I, AGRE II, and NIMH datasets 15 were subdivided by ethnicity and rs1861972
and rs1861973 were analyzed for association in the White non-Hispanic subset (489 families,
2266 individuals, 790 individuals with narrow autism diagnosis, 938 individuals with broad
ASD diagnosis). Three SNPs that displayed minimal association in the AGRE I dataset
(rs2361688, rs3824068, and rs12533271) were also tested for association in the White non-
Hispanic subset of AGRE I (154 families, 686 individuals, 241 individuals with autism narrow
diagnosis, 298 individuals with broad ASD diagnosis).

Luciferase assays
Details concerning the generation of luc constructs are available as Supplemental Information.
HEK293T cells were maintained in D-MEM supplemented with 10% FBS and 1% Penicillin/
Streptomycin. PC12 cells were maintained as above except with an additional 5% horse serum.
Granule cells were isolated from P6 C57BL6 mice by standard protocols and maintained at
35°C under 5% CO2 5μg of pGL3 constructs and 300ng of phRL-null vector (Promega) were
transfected by Amaxa electroporation into 5 million granule and PC12 cells. HEK293T cells
were transfected-null vector using the lipofectamine 2000 system. 24 hours following
transfection, cells were collected and lysed using a 1X Promega passive lysis buffer. Luciferase
activities were measured using the VeritasTMMicroplate Luminometer where 85μl of Promega
luciferase substrate (LARII) and 100μl of Promega Renilla luciferase substrate (Stop & Glow)
were consecutively added to 35μl of cell lysates.

Splicing RTPCR
HEK293T cells were transfected as described above with TATA-Luc-Intron A-C and G-T
constructs. 24 hours after transfection, RNA was isolated and cDNA was generated. Primer
sequences and RT-PCR conditions are available as Supplemental Information. The expected
RT-PCR products are 1758bp and 342bp using the F1/R and F2/R primers respectively.
Cerebellar post-mortem samples (lobule 6) were obtained from The Harvard Brain Tissue
Resource Center. The rs1861972 and rs1861973 genotype was determined as described
previously 15. Total RNA was isolated from two affected (1 A-C/G-T, 1 G-T/G-T) and two
psychiatrically normal (1 A-C/G-T, 1 G-T/GT) individuals by standard RNA purification
procedure using RNAlater-ICE (Ambion) and mirVana PARIS kit (Ambion). cDNA was
generated and RT-PCR was performed (see Supplemental Information). The predicted size of
the amplicon indicative of correct splicing is 134bp.
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qRT-PCR
HEK293T cells were transfected with TATA-Luc, TATA-Luc-Intron A-C, and G-T constructs
as described above. Primers for qPCR were designed using the Primer Express® software
version 2.0 and available as Supplemental Information. qPCR was performed by adding
20μM of each primer, 12.5μl of 2x SYBR® Green and 2.5μl of cDNA using the ABI PRISM®
7000HT Sequence Detection System.

Electrophoretic mobility shift assays
Nuclear extracts prepared from P6 mouse granule neurons cultured for 24 hours were isolated
using Panomics nuclear extraction kit (AY2002). Biotin-labeled, sense and anti-sense 21bp
probes were designed such that 10bp of sequence both 5' and 3' flanked the polymorphic alleles
of rs1861972 and rs1861973 (see Supplemental Information). Using the Panomics EMSA kit
(AY1000),100ng of nuclear extracts was incubated with 1μg of Poly d(I-C) for 5 minutes at
room temperature. 2μl of 5x binding buffer and 10ng of biotin labeled probes were then added
to a final volume of 10μl and incubated for 30 minutes at 20°. For competition assays, 100 to
80 fold molar excess of competitors was added to the mixture prior to the 30 minutes incubation.
The protein/DNA complex was separated on a non-denaturing 6% acrylamide gel in 0.5X Tris-
borate-EDTA (TBE) buffer and wet-transferred onto a Biodyne Nylon membrane (PALL)
which was exposed to a HyBlotCLTM Autoradiography film (Denville Scientific Inc) for
chemiluminescence detection.

RESULTS
Association and LD mapping analysis

Candidate risk alleles responsible for rs1861972-rs1861973 ASD association are anticipated
to fulfill the following three criteria: i) display high inter-marker r2 with rs1861972 and
rs1861973, ii) exhibit at least as strong association as the rs1861972-rs1861973 haplotype
under both narrow and broad diagnostic definitions, and iii) demonstrate a functional difference
between alleles.

Because the region immediately 3' of EN2 was not densely analyzed in our previous study,
eight additional polymorphisms were typed in AGRE I. None of these polymorphisms
displayed pairwise r2 values exceeding 0.05 with rs1861972 or rs1861973 (Supplemental
Table 1). In addition, one SNP (rs12533271) was marginally associated with ASD but only
under the broad diagnosis (Supplemental Table 2).

To extend our LD map, we then examined publicly available Hapmap data, which was typed
for rs1861973 but not rs1861972. To validate the applicability of the HapMap data to the
AGRE and NIMH samples, the following was performed. First, r2 and D' values were first
determined for 5 SNPs (rs1861973, rs6460013, rs3824067, rs3808331 and rs1861958) typed
in both the Hapmap and our ASD datasets. Because 70.3% of the AGRE datasets tested for
association were of Northern/Western European descent, the CEU inter-marker LD values
were evaluated first. Very similar r2 and D' values were observed in both datasets
(Supplemental Table 3). Second, the three ASD datasets tested previously for association (518
families) were then subdivided by ethnicity and 489 White non-Hispanic families were selected
for analysis. Individual and haplotype association for rs1861972 and rs1861973 association
was very similar between the White non-Hispanic subset and our previously reported results
(Supplemental Tables 4 and 5). These studies validate using Hapmap CEU data to identify
additional candidate risk alleles.

The Hapmap pairwise r2 values with rs1861973 were then ascertained in the CEU dataset for
3120 SNPs within 2 Mb of EN2 (~1 SNP/641bp; ~66% of validated Ensembl SNPs). This
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region was selected because it is likely to include most of the important cis-regulatory elements
for EN2 expression 20-22. We found that all Hapmap SNPs within the 2 Mb region were in
weak r2 with rs1861973 (<.370)(Fig 1). In addition, little difference in inter-marker r2 values
with rs1861972 and rs1861973 was noted in the White non-Hispanic subset (Fig 1,
Supplemental Fig 1) or the other Hapmap datasets (Supplemental Table 6).

Finally, the three other SNPs (rs2361688, rs3824068, and rs12533271) demonstrating minimal
association in the AGRE I dataset were analyzed in the White non-Hispanic subset (n=154).
Rs2361688 is not associated under either diagnostic definition while rs3824068 and
rs12533271 display minimal association only under one diagnostic criterion (Supplemental
Table 7).

Thus only rs1861972 and rs1861973 fulfill the first two criteria for an ASD risk allele
responsible for our previously reported EN2 association. One, they are in high r2 with each
other, and two both SNPs display consistent association with ASD under both diagnostic
criteria. For these reasons we first decided to test the possible functionality of rs1861972 and
rs1861973.

Luciferase assays
To investigate whether a functional difference could be observed between the two common
rs1861972-rs1861973 haplotypes (A-C and G-T), luciferase (luc) assays were performed. Luc
assays measure quanta of light and due to their reproducibility and sensitivity are commonly
used to test functional activity of cis-regulatory sequences. Since the activity of cis-regulatory
elements can be affected by position and functional variants associated with common disorders
often have subtle effects on gene regulation 23-29, we designed the luc constructs to
approximate the endogenous locus. The intron was cloned 3' of the promoter and the luc protein
coding sequence but 5' of the SV40 poly-adenylation site so that the intron would be transcribed
and spliced as the endogenous gene. Two promoters were used: the SV40 minimal promoter
or the EN2 promoter (-1 to -5500) that is evolutionarily conserved from humans to rodents.
These constructs were transiently transfected into three different cell types: a human
nonneuronal cell line (HEK293T), a rat neuronal cell line (PC12) and primary cultures of mouse
post-natal day 6 (P6) cerebellar granule neurons. Immunohistochemistry and in situ analysis
have established that En2 is expressed abundantly in P6 post-mitotic granule neurons 13,30.
Our RTPCR experiments demonstrated that En2 transcripts are detected in P6 primary granule
cell cultures and HEK293T cells but not PC12 cells (Supplemental Fig 2). In all three cell types
and for both promoters, the A-C haplotype resulted in a significant increase in luc levels
compared to the G-T haplotype (Fig 2).

We also transfected the SV40 minimal promoter intronic constructs into HEK-293T cells and
measured luc mRNA levels by q-RTPCR. A similar difference in normalized luc RNA levels
was observed between haplotypes (Supplementary Fig 3). These results demonstrate a
consistent functional difference between the A-C and G-T haplotypes.

Splicing assays
Because the intron is transcribed, we also investigated whether the A-C haplotype affects
splicing. For the above A-C and G-T constructs the intron also included the splice acceptor
and donor sequences of each EN2 exon so that potential splicing effects of the haplotype could
be investigated. The SV40 minimal promoter intronic constructs were then transfected into
HEK-293T cells and RTPCR experiments with multiple primer sets to luc and the SV40 polyA
sequence were performed (Supplemental Fig 4A). Appropriate cycling conditions were used
to amplify the intron if it was present in the cDNA. Only amplicons of the correctly spliced
transcripts were observed, indicating that neither haplotype resulted in cryptic splicing
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(Supplemental Fig 4B, C). This was confirmed by performing RTPCR for EN2 on cerebellar
post-mortem samples with and without the risk allele (Supplemental Fig 4D).

Electrophoretic Mobility Shift Assay (EMSA) analysis
To investigate whether the associated SNPs affect the binding of DNA proteins, EMSAs were
conducted. Nuclear extracts from P6 post-mitotic cerebellar granule cells were isolated and
incubated with labeled oligonucleotides containing either allele of rs1861972 and
rs1861973. For rs1861972, we detected two bands that specifically interacted with the common
A allele but not the rare G allele (Fig 3A). These protein-DNA complexes were consistently
observed in all nuclear extract preps (n=4). A third complex that interacted with both alleles
was also detected but its presence was more variable between extracts (Fig 3A, B).

Similar results were observed for rs1861973. Two specific DNA-protein complexes were
consistently detected for the common C allele but not the rare T allele while one shifted band
was observed for both alleles in some extracts (Fig 3A, B). All rs1861972 and rs1861973
DNA-protein complexes were competed with 100 molar excess of unlabelled oligonucleotide.
These data demonstrate the specific binding of factors to the common alleles of both SNPs,
which are over-transmitted to individuals with ASD.

Bioinformatic analysis (Transcription Element Search Software-TESS)31 supports our EMSA
results. The common A allele of rs1861972 (underlined) is situated in a canonical CCAAT
binding site recognized by three transcription factor families (NF1, NFY and C/EBP)
composed of multiple genes. The rare G allele (CCAGT) replaces one of the obligatory A
nucleotides required for transcription factor recognition, which is predicted to completely
disrupt binding of all three transcription factor families (Fig 4, Supplemental Table 8). For
rs1861973, the sequence containing the common C allele is situated in overlapping consensus
sites for the Sp1 and Ets family of transcription factors (Fig 4). Similar to rs1861972, the rare
T allele of rs1861973 replaces a cytosine, which is required for the sequence-specific DNA
binding of Sp1 and Ets family members. Transcription factors are also predicted to bind equally
well to both alleles of rs1861972 and rs1861973, consistent with the common shifted
complexes observed in some extract preps.

We further investigated the specificity of binding by performing additional competitions.
Oligonucleotides mutated for either the CCAAT sequence for rs1861972 or the overlapping
Sp1/Ets binding site for rs1861973 did not compete in our EMSAs (Fig 4B). Finally,
oligonucleotides containing the rare alleles for rs1861972 (G allele) and rs1861973 (T allele)
also did not compete as well as equimolar amounts of the associated alleles (Fig 4B). These
studies are consistent with rs1861972 and rs1861973 affecting the binding of nuclear factors.

DISCUSSION
Our previous data demonstrated that the rs1861972-rs1861973 A-C haplotype is consistently
associated with ASD in three separate datasets. LD mapping, association analysis and re-
sequencing identified the rs1861972-rs1861973 haplotype as a possible risk allele. It was
equally possible the associated SNPs were in strong LD with a risk variant mapping at a distance
from EN2. In addition, no functional difference between the rs1816972-rs1861973 A-C and
G-T haplotypes had yet been demonstrated 14,15. We have now extended the LD map and none
of the new markers display high inter-marker r2 with rs1861973. These data are consistent with
the shorter LD spans typically observed in telomeric positions 32 but it remains formally
possible that rs1861972 and rs1861973 are in high r2 with other polymorphisms not typed in
our analysis and these unidentified variants may also contribute to a functional difference.
Nevertheless our LD mapping and association results identified the rs1861972-rs1861973
haplotype as the best candidate for functional experiments. Our luc assays demonstrate a
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consistent increase in levels for the A-C haplotype in three cell types using two different
promoters. The specific binding of nuclear factors to the A and C alleles support this functional
difference. In summary only rs1861972 and rs1861973 currently fulfill all three criteria of a
risk allele responsible for our reported EN2 association: i) these SNPs are consistently
associated with ASD under a narrow (autism) and broad (ASD) diagnostic criteria both
individually and as a haplotype, ii) rs1861972 and rs1861973 are in high inter-marker r2 with
each other, and iii) a functional difference between alleles has been observed. Together these
data support EN2 as a likely ASD susceptibility gene and the A-C haplotype as a possible risk
allele.

Rs2361688 is the only tested polymorphism, which is in high but not perfect r2 with both
rs1861972 and rs1861973 and displays minimal association with ASD. These results could be
explained in two ways. One, rs2361688 is a SNP that segregates frequently with rs1861972
and rs1861973 but individually is not functional. The difference in association for
rs2361688 versus rs1861972 and rs1861973 is consistent with this possibility (rs2361688:
narrow P=.128; broad P=.040; rs1861972: narrow P=.026, broad P=.016; rs1861973: narrow
P=.008, broad P=.012). Alternatively, rs2361688 may function in concert with the A-C
haplotype. However if this were the case, the common rs2361688-rs1861972-rs1861973
haplotype (G-A-C) would be expected to display more significant association than the A-C
haplotype, which is not observed (G-A-C: narrow P=.009, broad P=.004; A-C: narrow P=.002,
broad P=.004). Thus our current data suggests that rs2361688 is non-functional but segregates
with the functional rs1861972-rs1861973 haplotype. Nevertheless to further investigate the
possible involvement of rs2361688, additional association analysis in the AGRE II and NIMH
datasets in the AGRE II and NIMH datasets are ongoing. If positive results are obtained, then
functional experiments can be performed. Finally several other EN2 polymorphisms that are
not in high r2 with rs1861972 or rs1861973 also exhibit minimal association in our study and
other published reports. These data suggest the possible presence of additional EN2 risk alleles.
Future association, LD mapping and functional experiments will test this possibility.

Common functional variants reported to increase risk for other diseases typically affect the
regulation of the associated gene 24-29,33. The significant increase in luc levels for the A-C
haplotype is consistent with these published results and can be explained by two possible
molecular mechanisms. One, since the intron is transcribed and spliced in our constructs, the
functional difference could be due to the haplotypes affecting splicing efficiency or stability
of nuclear pre-mRNA. This would reduce the amount of luc protein and be consistent with the
functional effects of intronic SNPs for other common disorders23. Two, the rs1861972-
rs1861973 haplotype could regulate transcription initiation. This possibility is supported by
our EMSA data and the bioinformatics indicating that both associated alleles are situated in
well-defined consensus transcription factor binding sequences. It is also well established that
these transcription factors can function at a distance and in a position independent manner.
Published reports for other intronic risk alleles are consistent with this idea 24,33,34. Finally,
current bioinformatic data does not support another transcript or miRNA mapping to the
EN2 intron and contributing to the functional difference between alleles (genome.ucsc.edu).
Regardless of the molecular mechanism, our in vitro results indicate that the rs1861972-
rs1861973 haplotype is functional and suggest the A-C haplotype will affect EN2 levels in
vivo.

A large number of transcription factors are predicted to bind to the A and C alleles of
rs1861972 and rs1861973. The A allele of rs1861972 is situated in a CCAAT box which is a
consensus binding site for the C/EBP, NF1 and NFY transcription factor family of proteins.
Each of these protein families is comprised of multiple genes (NFIA, B, C and X; C/EBPA, B,
D, E, G and Z; NFYA, B and C). In addition each NFI and NFY gene also generates multiple
protein isoforms through alternative splicing and processing 35. Approximately 40 different
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transcription factors could then bind to the rs1861972 A allele. For rs1861973, a similar large
number of proteins are predicted to bind to the rs1861973 C allele, nine Sp1 members and ~25
Ets factors 36-38. Previous in situ studies have demonstrated that a large percentage of these
genes are widely expressed in the developing and adult brain including neuronal cell types that
transcribe EN2 such as post-mitotic granule cells 30. Microarray analysis has also determined
that these putative transcription factors are expressed in HEK-293 and PC12 cells used in our
transfection analysis (Gene Expression Omnibus). Interestingly, these transcription factor
family members can function as either activators or repressors 35,39-41. Because EN2 is
expressed in a variety of different developmental cell types, the magnitude and direction of the
haplotype functional effect could vary between cells depending upon the expression of these
various transcription factor isoforms. Alternatively, it is possible that other unidentified factors
could be responsible for the observed protein-DNA complexes. Future experiments will be
directed at identifying the nuclear proteins that bind to rs1861972 and rs1861973 using a
variety of adult and developmental cell types, in which the haploype has been shown to be
functional.

To investigate whether the rs1861972-rs1861973 haplotype affects EN2 levels in vivo, both
post-mortem analysis and mouse models will be employed. Post-mortem cerebellar samples
are currently being obtained to investigate whether affection status and/or haplotype are
correlated with altered EN2 mRNA and protein levels. Transgenic mice have been created for
both haplotypes where EN2 cis-regulatory sequences drive the expression of a fluorescent
reporter. These mice will allow us to determine the potential regulatory effects of the haplotype
in the developing and adult CNS. Knock-in mice are also being generated where the mouse
locus is being replaced with either human haplotype. These knock-in mice will provide an
important resource for determining potential phenotypic effects caused by altered EN2 levels.
These ongoing in vivo studies will extend our current in vitro analysis and provide information
regarding when, where, and how the haplotype is functional.

EN2 is a homeobox transcription factor that regulates gene expression during embryonic and
post-natal CNS development and continues to be expressed in a subset of differentiated neurons
in the adult. Mutational analysis using model organisms has demonstrated that En2 is necessary
for the development of the cerebellum, ventral neurons of the serotonin, norepinephrine and
dopamine neurotransmitter systems as well as the proper topographic mapping of retinal axons
onto the tectum 10,13,42-46. Various anatomical, neurochemical and eye tracking studies have
implicated these structures and neurotransmitter systems in the etiology of autism 1,47. Thus
altered levels of EN2 may affect these or other developmental systems, which will be
investigated in our rs1861972-rs1861973 knock-in mice.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
ENGRAILED 2 LD map. Inter-marker r2 values for rs1861973 are shown. The map includes
26 EN2 polymorphisms typed in the AGRE I dataset (167 families not subset on ethnicity) plus
3120 Hapmap SNPs within 2Mb of EN2 (+1Mb 5', -1Mb 3') typed in the CEU dataset. Only
rs1861972 and rs2361688 display high r2 values (>.75) with rs1861973. However,
rs2361688 is not consistently associated with ASD 15, identifying rs1861972 and rs1861973
as the most appropriate candidates to test for functional allelic differences.
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Figure 2.
Functional difference between rs1861972-rs1861973 A-C and G-T haplotypes. (a) The
functional difference between the A-C and G-T intronic haplotypes was investigated by
generating the diagrammed luc reporter constructs: T- SV40 minimal promoter 5' of luc without
EN2 intron, P- EN2 promoter (-1 to -5735) 5' of luc without EN2 intron, AC- EN2 intron with
rs1861972-rs1861973 A-C haplotype cloned 3' of luciferase but 5' of the SV40 polyadenylation
signal to approximate the endogenous locus, GT- EN2 intron with rs1861972-rs1861973 G-T
haplotype cloned 3' of luciferase but 5' of the SV40 polyadenylation signal. (b-d) Relative light
units of luciferase normalized to Renilla reniformis and expressed as percent of control, pgl3
promoter vector (T), is shown for the SV40 minimal promoter constructs transiently transfected
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into (b) P6 cerebellar granule neurons (n=6), (c) PC12 cells (n=6) and (d) HEK293T cells
(n=6). (e-g) Normalized relative light units of luciferase for luc EN2 promoter constructs
expressed as percent of control (P) is shown for (e) P6 cerebellar granule neurons (n=7), (f)
PC12 cells (n=6) and (g) HEK293T cells (n=6). * P<.005, ** P<.001, *** P < .00001, two
tailed paired Student's T test
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Figure 3.
Differential binding of nuclear proteins to rs1861972 and rs1861973 associated alleles. (A)
To investigate whether the associated SNPs affect the binding of nuclear proteins, EMSAs
were conducted with biotinylated 20-mer oligonucleotides and nuclear extract isolated from
P6 mouse cerebellar granule cells. Extract was incubated with oligonucleotides specific to each
allele, separated on a denaturing acrylamide gel, transferred to a membrane and detected by
chemiluminescence. Several protein-DNA complexes were observed for both SNPs.
Specificity was determined by competing with 100 molar excess of unlabelled oligonucleotide.
Protein-DNA complexes specific to the associated rs1861972 A allele or rs1861973 C allele
were observed (arrows) that were not detected for the corresponding rs1861972 G allele or
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rs1861973 T allele biotinylated oligonucleotides. In addition, protein-DNA complexes
common to both alleles for rs1861972 or rs1861973 were observed (arrowheads).
Abbreviations: 972-A: 20-mer oligonucleotide specific to the rs1861972 A allele, 972-G: 20-
mer oligonucleotide specific to the rs1861972 G allele, 973-C and C: 20-mer oligonucleotide
specific to the rs1861973 C allele, 973-T and T: 20-mer oligonucleotide specific to the
rs1861973 T allele, + or -: presence or absence respectively of extract or 100 molar excess of
unlabelled oligonucleotide. (B) To examine allele-specific binding of nuclear proteins to
rs1861972 (left) and rs1861973 (right), additional competitions were performed. 80 molar
excess of 3 different unlabelled oligonucleotides were each added individually to the probe
and nuclear extract: oligonucleotide with the same sequence as the biotinylated probe (972-A,
973-C), mutant oligonucleotides predicted to disrupt NF1, NFY, C/EBP binding to the A allele
of rs1861972 or Sp1 and Ets binding to the C allele of rs1861873, and oligonucleotides for the
non-associated G (972-G) and T (973-T) alleles. The sequence for each oligonucleotide is
shown. Abbreviation: - absence of competitor
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Figure 4.
Conservation of transcription factor binding sites for associated and non-associated alleles of
rs1861972 and rs1861973. The 20 bp sequence encompassing rs1861982 and rs1861973 and
used as probes in our EMSAs is depicted. Conserved transcription factor sites are underlined
with the polymorphic allele for each SNP designated with an asterisk.
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