
Mapping copy number variation by population scale genome
sequencing

Ryan E. Mills1,*, Klaudia Walter2,*, Chip Stewart3,*, Robert E. Handsaker4,*, Ken Chen5,*,
Can Alkan6,7,*, Alexej Abyzov8,*, Seungtai Chris Yoon9,*, Kai Ye10,*, R. Keira
Cheetham11, Asif Chinwalla5, Donald F. Conrad2, Yutao Fu12, Fabian Grubert13, Iman
Hajirasouliha14, Fereydoun Hormozdiari14, Lilia M. Iakoucheva15, Zamin Iqbal16, Shuli
Kang15, Jeffrey M. Kidd6, Miriam K. Konkel17, Joshua Korn4, Ekta Khurana8,18, Deniz
Kura13, Hugo Y. K. Lam13, Jing Leng8, Ruiqiang Li19, Yingrui Li19, Chang-Yun Lin20,
Ruibang Luo19, Xinmeng Jasmine Mu8, James Nemesh4, Heather E. Peckham12, Tobias
Rausch21, Aylwyn Scally2, Xinghua Shi1, Michael P. Stromberg3, Adrian M. Stütz21,
Alexander Eckehart Urban13, Jerilyn A. Walker17, Jiantao Wu3, Yujun Zhang2, Zhengdong
D. Zhang8, Mark A. Batzer17, Li Ding5,22, Gobor T. Marth3, Gil McVean23, Jonathan
Sebat15, Michael Snyder13, Jun Wang19,24, Kenny Ye20, Evan E. Eichler6,7,*, Mark B.
Gerstein8,18,25,*, Matthew E. Hurles2,*, Charles Lee1,*, Steven A. McCarroll4,26,*, Jan O.
Korbel21,*,@, and 1000 Genomes Project#

1Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston,
MA 2The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB 10 1SA UK. 3Department of Biology, Boston College, Boston, MA 4Broad Institute
of Harvard and Massachusetts Institute of Technology, Cambridge, MA 5The Genome Center at
Washington University, St. Louis, MO 6Department of Genome Sciences, University of
Washington School of Medicine, Seattle, WA 7Howard Hughes Medical Institute, University of
Washington, Seattle, Washington, USA. 8Program in Computational Biology and Bioinformatics,
Yale University, New Haven, CT 9Seaver Autism Center and Department of Psychiatry, Mount
Sinal School of Medicine, New York, NY 10Departments of Molecular Epidemiology, Medical

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research,
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
@Correspondence should be addressed to (jan.korbel@embl.de). .
*These authors contributed equally to this work.
#Lists of paraticipants and affiliations appear in Supplementary Information.
Author Contributions: The authors contributed this study at different levels, as described in the following. SV discovery: K.W., C.S.,
R.H., K.C., C.A., A.A., S.C.Y., R.K.C., A.C., Y.F., I.H., F.H., Z.I., D.K., R.L., Y.L., C.L., R.L., X.J.M., H.E.P., L.D., G.T.M., J.S.,
J.W., K.Y., K.Y., E.E.E., M.B.G., M.E.H., S.A.M., and J.O.K. SV validation: R.E.M., K.W., K.C., A.A., S.C.Y., F.G., M.K.K., J.K.,
J.N., A.E.U., X.S., A.M.S., J.A.W., Y.Z., Z.Z., M.A.B., J.S., M.S., M.E.H., C.L, J.O.K. SV genotyping: K.W., R.H., M.E.H, and
S.A.M. Data analysis: R.E.M., C.S., C.A., A.A., R.H., K.C., S.C.Y., R.K.C., A.C., D.C., Y.F., F.H., L.M.I., Z.I., J.M.K., M.K.K.,
S.K., J.K., E.K., D.K., H.Y.K.L., J.L., R.L., Y.L., C.L., R.L., X.J.M., J.N., H.E.P., T.R., A.S., X.S., M.P.S., J.A.W., J.W., Y.Z., Z.Z.,
M.A.B., L.D., G.T.M., G.M. ,J.S., M.S., J.W., K.Y., K.Y., E.E.E., M.B.G., M.E.H., C.L, S.A.M., and J.O.K. Preparation of
manuscript display items: R.E.M., K.W., C.S., C.A., A.A., R.H., S.C.Y., L.M.I., S.K., E.K., M.K.K., X.J.M., X.S., J.A.W., M.B.G.,
S.A.M., and J.O.K. Co-chairs of the Structural Variation Analysis group: E.E.E., M.E.H., and C.L. The following were leading
contributors to the analysis described in this paper and therefore should be considered joint first authors: R.E.M., K.W., C.S., R.H.,
K.C., C.A., A.A., S.C.Y, and K.Y. The following equally contributed to directing the described analyses and participating in the
design of the study and should be considered joint senior authors: E.E.E, M.B.G., M.E.H., C.L, S.A.M., and J.O.K. The manuscript
was written by the following authors: R.E.M. and J.O.K.
Competing interests statement: The authors declare competing financial interests. H.E.P. and Y.F. are employees of Life
Technologies, the manufactures of the SOLiD sequencing platform. R.K.C. is an employee of Illumina Cambridge Ltd., the
manufacturer of the Illumina sequencing platform.
Data retrieval: The data sets described here can be obtained from the 1000 Genomes Project website at www.1000genomes.org (July
2010 Data Release). Individual SV discovery methods can be obtained from sources mentioned in Supplementary Table 1, or upon
request from the authors. Abbreviations used in this paper are summarized in the Supplementary Text.

NIH Public Access
Author Manuscript
Nature. Author manuscript; available in PMC 2011 August 3.

Published in final edited form as:
Nature. 2011 February 3; 470(7332): 59–65. doi:10.1038/nature09708.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.1000genomes.org


Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
11Illumina Cambridge Ltd, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, UK
12Life Technologies, Beverly, MA 13Department of Genetics, Stanford University, Stanford, CA
14School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada.
15Department of Psychiatry, Department of Cellular and Molecular Medicine, Institute for Genomic
Medicine, University of California, San Diego, La Jolla, CA 16Wellcome Trust Centre for Human
Genetics, University of Oxford, OX3 7BN, UK 17Department of Biological Sciences, Louisiana
State University, Baton Rouge, Louisiana 18Molecular Biophysics and Biochemistry Department,
Yale University, New Haven, CT 19BGI-Shenzhen, Shenzhen 518083, China 20Albert Einstein
College of Medicine, Bronx, NY 21Genome Biology Research Unit, European Molecular Biology
Laboratory, Heidelberg, Germany 22Department of Genetics, Washington University, St. Louis,
MO 23Department of Statistics, University of Oxford, OX3 7BN, UK 24Department of Biology,
University of Copenhagen, Copenhagen, Denmark 25Department of Computer Science, Yale
University, New Haven, CT 26Department of Genetics, Harvard Medical School, Boston, MA

Summary
Genomic structural variants (SVs) are abundant in humans, differing from other variation classes
in extent, origin, and functional impact. Despite progress in SV characterization, the nucleotide
resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs
(i.e., copy number variants) based on whole genome DNA sequencing data from 185 human
genomes, integrating evidence from complementary SV discovery approaches with extensive
experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs,
including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide
resolution, which facilitated analyzing their origin and functional impact. We examined numerous
whole and partial gene deletions with a genotyping approach and observed a depletion of gene
disruptions amongst high frequency deletions. Furthermore, we observed differences in the size
spectra of SVs originating from distinct formation mechanisms, and constructed a map constructed
a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map
serves as a resource for sequencing-based association studies.

Introduction
Unbalanced structural variants (SVs), or copy number variants (CNVs), involving large-
scale deletions, duplications, and insertions form one of the least well studied classes of
genetic variation. The fraction of the genome affected by SVs is comparatively larger than
that accounted for by single nucleotide polymorphisms1 (SNPs), implying significant
consequences of SVs on phenotypic variation. SVs have already been associated with
diverse diseases, including autism2,3, schizophrenia4,5 and Crohn’s disease6,7.
Furthermore, locus-specific studies suggest that diverse mechanisms may form SVs de novo,
with some mechanisms involving complex rearrangements resulting in multiple
chromosomal breakpoints8,9.

Initial microarray-based SV surveys focused on large gains and losses10,11,12, with recent
advances in array technology widening the accessible size spectrum towards smaller
SVs1,13. Microarray-based commonly mapped SVs to approximate genomic locations.
However, a detailed SV characterization, including analyses of SV origin and impact,
requires knowledge of precise SV sequences. Advances in sequencing technology have
enabled applying sequence-based approaches for mapping SVs at fine-
scale14,15,16,17,18,19,20,21. These approaches include: (i) paired-end mapping (or read
pair ‘RP’ analysis) based on sequencing and analysis of abnormally mapping pairs of clone
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ends14,22,23,24 or high-throughput sequencing fragments15,17,18; (ii) read-depth (‘RD’)
analysis, which detects SVs by analyzing the read depth-of-coverage16,21,25,26,27; (iii)
split-read (‘SR’) analysis, which evaluates gapped sequence alignments for SV
detection28,29; and (iv) sequence assembly (‘AS’), which enables the fine-scale discovery
of SVs, including novel (non-reference) sequence insertions30,31,32. Sequence-based SV
discovery approaches have thus far been applied to a limited (<20) number of genomes,
leaving the fine-scale architecture of most common SVs unknown.

Sequence data generated by the 1000 Genomes Project (1000GP) provide an unprecedented
opportunity to generate a comprehensive SV map. The 1000GP recently generated 4.1
Terabases of raw sequence in pilot projects targeting whole human genomes33
(Supplementary Table 1). These studies comprise a population-scale project, termed ‘low-
coverage project’, in which 179 unrelated individuals were sequenced with an average
coverage of 3.6X – including 59 Yoruba individuals from Nigeria (YRI), 60 individuals of
European ancestry from Utah (CEU), 30 of Han ancestry from Beijing (CHB), and 30 of
Japanese ancestry from Tokyo (JPT; the latter two were jointly analyzed as JPT+CHB). In
addition, a high-coverage project, termed the ‘trio project’, was carried out, with individuals
of a CEU and a YRI parent-offspring trio sequenced to 42X coverage on average.

We report here the results of analyses undertaken by the Structural Variation Analysis
Group of the 1000GP. The group’s objectives were to discover, assemble, genotype, and
validate SVs of 50 bp and larger in size, and to assess and compare different sequence-based
SV detection approaches. The focus of the group was initially on deletions, a variant class
often associated with disease9, for which rich control datasets and diverse ascertainment
approaches exist1,13,22,28. Less focus was placed on insertions and duplications34 and
none on balanced SV forms (such as inversions). Specifically, we applied nineteen methods
to generate an SV discovery set. We further generated reference genotypes for most
deletions, assessed the SVs’ functional impact, and stratified SV formation mechanism with
respect to variant size and genomic context.

Prediction of SV candidate loci and assessment of discovery methods
We incorporated the SV discovery methods into a pipeline (Fig. 1AB), with the goal of
ascertaining different SV types and assessing each method for its ability to discover SVs.
The methods detected SVs by analyzing RD, RP, SR, and AS features, or by combining RP
and RD features (abbreviated as ‘PD’). Altogether we generated thirty-six SV callsets by
applying the methods on trio and low-coverage data, and by identifying SVs as genomic
differences relative to a human reference, corresponding to the reference genome, or to a set
of individuals (i.e. population reference; Supplementary Table 2). We initially identified
SVs as deletions, tandem duplications, novel sequence insertions, and mobile element
insertions (MEIs) relative to the human reference. Subsequent comparative analyses
involving primate genomes enabled us to classify SVs as deletions, duplications, or
insertions relative to inferred ancestral genomic loci, reflecting mechanisms of SV formation
(see below). DNA reads analyzed by SV discovery methods were initially mapped to the
human reference genome using a variety of alignment algorithms. Most of these algorithms
mapped each read to a single genomic position, although one algorithm (mrFAST16) also
considered alternative mapping positions for reads aligning onto repetitive regions (see
Supplementary Tables 2-4 for method-specific parameters and full SV callsets). We filtered
each callset by excluding SVs <50bp, which are reported elsewhere33. Many SVs exhibited
support from distinct SV discovery methods, as exemplified by a common deletion,
previously associated with body-mass index35 (BMI), that we identified with RP, RD, and
SR methods (Fig. 1C). Nonetheless, we observed notable differences between methods (Fig.
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2ABC) in terms of genomic regions ascertained (Supplementary Fig. 1), accessible SV size-
range (Fig. 2A), and breakpoint precision (Fig.2C, Supplementary Fig. 2).

To estimate callset specificity, we carried out extensive validations (Methods), including
PCRs for over 3,000 candidate loci, and microarray data analyses for 50,000 candidate loci
(Supplementary Tables 3, 4; Supplementary Fig. 3). We combined PCR and array-based
analysis results to estimate false discovery rates (FDRs), and found that eight callsets (three
deletion, four insertion, and one tandem duplication callset) met the pre-specified specificity
threshold33 (FDR≤10%), whereas the other callsets yielded lower specificity (FDRs of
13%-89%).

We further assessed the sensitivity of deletion discovery methods by collating data from four
earlier surveys1,13,22,28 into a gold standard (Methods, Supplementary Tables 5, 6, and
Supplementary Fig. 4A), and specifically assessing the detection sensitivity for an individual
sequenced at high-coverage (NA12878) as well as for an individual sequenced at low-
coverage (NA12156). Unsurprisingly, given the typical trade-off between sensitivity and
specificity, in the trios the highest sensitivities were achieved by RD and RP methods with
FDR>10% (Fig. 2B). By comparison, in the low-coverage data, the individual method with
the greatest accuracy (FDR=3.7%) was the second most sensitive based on our gold standard
(Fig. 2B), and the most sensitive when expanding the gold standard to a larger set of
individuals (Supplementary Fig. 4B). This method, Genome STRiP (to be described
elsewhere36), integrated both RP and RD features (PD), implying that considering different
evidence types can improve SV discovery.

Construction of a high-confidence SV discovery set
To construct our SV discovery set (“release set”), we joined calls from different discovery
methods corresponding to the same SV with a merging approach that was aware of each
callset’s precision in SV breakpoint detection (Supplementary Fig. 5 and Methods). Most
SVs in the release set (61%) were contributed by individual methods meeting the pre-
defined specificity threshold (FDR≤10%). The remaining 39% of calls were contributed by
lower specificity methods following experimental validation. Altogether, the release set
comprised 22,025 deletions, 501 tandem duplications, 5,371 MEIs, and 128 non-reference
insertions (Table 1, Supplementary Table 7). With our gold standard we estimated an overall
sensitivity of deletion discovery of 82% in the trios, and 69% in low-coverage sequence
(Fig. 2B) using a 1 bp overlap criterion. When instead applying a stringent 50% reciprocal
overlap criterion for sensitivity assessment (which required SV sizes inferred on different
experimental platforms to be in close agreement) our sensitivity estimates decreased by 12%
and 18%, respectively, in trio and low-coverage sequence (Supplementary Table 8). We
further examined an alternative approach that involved the pairwise integration of deletion
discovery methods, and tested its ability to discover SVs without relying on the inclusion of
lower specificity calls following experimental validation (“algorithm-centric set”; Fig. 1B).
While this alternative approach resulted in an increased number (by ~13%) of high-
specificity (FDR<10%) calls compared to the release set (Supplementary Text), it overall
resulted in fewer SV calls owing to its decreased sensitivity at the lower (<200bp) SV size
range. In the following analyses we thus focused on the release set.

Extent and impact of our SV discovery set
We next assessed the extent and impact of our SV discovery (release) set. The median SV
size was 729 bp (mean=8 kb), approximately four times smaller than in a recent tiling CGH
based study1, reflecting the high resolution of DNA sequence based SV discovery. We also
compared our set to a recent survey of SVs in an individual genome37 based on capillary
sequencing and array-based analyses24, and observed a similar size distribution for
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deletions, but differences in the size distributions of other SV classes, reflecting underlying
differences in SV ascertainment (Supplementary Fig. 6). By comparing our SVs to databases
of structural variation and to additional personal genome datasets, we classified 15,556 SVs
in our set as novel, with an enrichment of low frequency SVs and small SVs amongst the
novel variants (Methods and Supplementary Text).

A major advantage of sequence-based SV discovery is the nucleotide resolution mapping of
SVs. We initially mapped the breakpoints of 7,066 deletions and 3,299 MEIs using SR and
AS features. Using the TIGRA-targeted assembly approach38 we further identified the
breakpoints of an additional 4,188 deletions and 160 tandem duplications, initially
discovered by RD, RP, and PD methods (Methods, Supplementary Table 2). Altogether, we
mapped ~15,000 SVs at nucleotide resolution, 48% of which were novel. Few deletion loci
(4.4%) displayed different SV breakpoints in different samples, which is explainable by rare
TIGRA misassemblies, or alternatively, by recurrently formed, multi-allelic SVs
(Supplementary Text). TIGRA further enabled us to validate an additional 7,359 SVs
discovered with RP or RD features by identifying the SVs’ breakpoints (Methods), and to
evaluate the mapping precision of SV discovery methods (Fig. 2C, Supplementary Figure 2).

We further assessed the putative functional impact of SVs in our set by relating them to
genomic annotation. Seventeen hundred SVs affected coding sequences, resulting in full
gene overlaps or exon disruptions (Table 2), many of which led to out-of-frame exons
(Supplementary Table 9). We related gene disruptions to gene functions, and observed
significant enrichments for several functional categories including cell defense and sensory
perception (Supplementary Table 10). High levels of structural variation, including copy-
number variation, were previously described for both processes15,22,39. These SVs might
be maintained in the population by selection for the purpose of functional redundancy.
While most SVs intersecting with genes were deletions, several validated tandem
duplications and MEIs also intersected with coding sequences (Table 2).

Population genetic properties of deletions
We next sought to generate genotypes for deletions discovered in the 1000GP data, both to
facilitate population genetics analyses and to make our SV set amenable to association
studies in the form of a reference genotype set. In this regard, the Genome STRiP36
genotyping method was developed, a method combining information from RD, RP, SR and
haplotype features of population-scale sequence data for genotyping (Methods,
Supplementary Text). Using this approach we generated genotypes for 13,826 autosomal
deletions in 156 individuals. The genotypes displayed 99.1% concordance with CGH array1
based genotypes (available for 1,970 of the deletions), suggesting high genotyping accuracy.

Fig. 3 presents allele frequency analyses based on these genotypes. As expected, common
polymorphisms (minor allele frequency (MAF) >5%) were generally shared across
populations, while rare alleles were frequently observed in only one population (Figs.
3ABC). We observed several candidates for monomorphic deletions (i.e., genomic segments
putatively deleted in all individuals), explainable by rare insertions present in the reference
genome or by remaining genotyping inaccuracies (Supplementary Text).

We next assessed the allele frequencies of gene deletions (Fig. 3D). Similar to a recent
array-based study1, we observed a depletion of high frequency alleles among deletions
intersecting with protein-coding sequence compared to other deletions (P=1.1×10−11; KS
test), consistent with purifying selection keeping most gene deletions at low frequency.
Nonetheless, several coding sequence deletions were observed with high allele frequency
(>80%). Most of these occurred in regions annotated as segmental duplications, consistent
with lessened evolutionary constraintin functionally redundant gene categories22.
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Intriguingly, common gene deletions also affected many unique genes with no obvious
paralogs. We further analyzed the abundance of gene deletions in different populations and
observed highly differentiated loci, albeit with no statistically significant relationship
between differentiation and particular categories of gene overlap, i.e., intronic vs. exonic
(Supplementary Text).

By comparing deletion genotypes with genotypes of nearby SNPs, we found, consistent with
earlier studies1,13,40, that deletions in genomic regions accessible to short read sequencing
display extensive linkage disequilibrium (LD) with SNPs. 81% of common deletions had
one or more SNPs with which they are strongly correlated (r2>0.8; Supplementary Fig. 7).
This suggests that many deletions mapped in our study will be identifiable through tagging
SNPs in future studies (Supplementary Text). On the other hand, a fifth of the genotyped
deletions were not tagged by HapMap SNPs (a figure similar to the fraction of SNPs that are
not tagged by HapMap SNPs41), implying that these SVs should be genotyped directly in
association studies. Furthermore, the LD properties of complex SVs (e.g., multiallelic SV)
have not yet been fully ascertained as methods for genotyping such SVs with similar
accuracy still being developed.

SV formation mechanism analysis
Nucleotide resolution breakpoint information enables inference of SV formation
mechanisms15,22. Recent studies broadly distinguished between several germline
rearrangement classes, some of which may comprise more than one SV formation
mechanism15,22,42,43: non-allelic homologous recombination (NAHR), associated with
long sequence similarity stretches around the breakpoints; rearrangements in the absence of
extended sequence similarity (abbreviated as “non-homologous” or NH), associated with
DNA repair by non-homologous end-joining (NHEJ) or with microhomology-mediated
break-induced replication (MMBIR); the shrinking or expansion of variable number of
tandem repeats (VNTRs), frequently involving simple sequences, by slippage; and MEIs.
We distinguished among the classes NAHR, NH, VNTR, and MEI by examining the
breakpoint junction sequence of SVs initially discovered as deletions or tandem duplications
relative to a human reference.

We first compared the SVs to orthologous primate genomic regions to distinguish deletions
from insertions/duplications with respect reconstructed ancestral loci using the BreakSeq
classification approach43. This analysis showed that of the 11,254 nucleotide-resolution
SVs discovered as deletions relative to a human reference, 21% actually represented
insertion and 2% represented tandem duplications relative to the putative ancestral genome.
Of the remaining SVs, 60% were classified as deletions relative to ancestral sequence,
whereas the ancestral state of 17% was undetermined. By comparison, out of 160
nucleotide-resolution SVs identified as tandem duplications relative to the reference
genome, 91.6% were classified as duplications relative to the ancestral genome, whereas the
ancestral state of 8.4% remained undetermined (Supplementary Text). Our breakpoint
analysis revealed that 70.8% of the deletions and 89.6% of the insertions exhibited
breakpoint microhomology/homology ranging from 2-376 bp in size, with distribution
modes of 2 bp (attributable to NH) and 15 bp (attributable to MEI), respectively (Fig. 4A,
Supplementary Text). As expected42, a small portion of the deletions (16.1%) displayed
non-template inserted sequences at their breakpoint junctions. By comparison, the tandem
duplications showed extensive stretches displaying ≤95% sequence identity at the
breakpoint linearly correlating in lenght with SV size (Fig. 4A). In addition, most tandem
duplications displayed 2-17 bp of microhomology at the breakpoint junctions
(Supplementary Text).
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We subsequently applied BreakSeq43 to infer formation mechanisms for all SVs classified
with regard to ancestral state. Using BreakSeq, we inferred NH as the dominating deletion
mechanism, and MEI as the dominating insertion mechanism (Fig. 4BC, Supplementary
Table 11). Furthermore, an abundance of microhomology at tandem duplication breakpoints
suggested frequent formation of this SV class by a rearrangement process acting in the
absence of homology (NH). When relating SV formation to the variant size spectrum, we
observed marked insertion peaks for MEIs at 300 bp, corresponding to Alu elements, and at
6 kb, corresponding to L1/LINEs (Fig. 4C). By comparison, NH and NAHR based
mechanisms occurred across a wide size-range, whereas VNTR expansion/shrinkage,
consistent with earlier findings1, led to relatively small SV sizes (Figs. 4C,D).

Furthermore, when displaying the genomic distribution of SVs (Fig. 5A), we observed a
notable clustering of SVs into ’SV hotspots’. We analyzed this clustering in detail by
examining the distribution of non-overlapping, adjacent SVs, and observed a marked
clustering of SVs formed by NAHR, VNTR, and NH, respectively, a signal extending to
hundreds of kilobases (Fig.5B). The clustering was influenced by an abundance of VNTR
near the centromeres43 and NAHR near the telomeres (Fig.5A). A significant enrichment of
NAHR near recombination hotspots (P=1.3e-15) and segmental duplications (P=3.1e-17)
further contributed to the clustering (Supplementary Table 13).

To further explore this clustering we devised a segmentation approach for predicting SV
hotspots (Methods), which yielded a map of 51 putative SV hotspots (Supplementary Table
14). 80% of the hotspots mainly comprised SVs originating from a single formation
mechanism (Fig. 5C). Most of these corresponded to NAHR hotspots, although hotspots
dominated by NH and VNTR also were evident. These observations suggest that SV
formation is frequently associated with the locus-specific propensity for genomic
rearrangement.

Conclusions and discussion
By generating an SV set of unprecedented size along with breakpoint assemblies and
reference genotypes, we demonstrate the suitability of population-scale sequencing for SV
analysis. Nucleotide resolution data allow the construction of reference datasets and make
SVs readily assessable across different experimental platforms using genotyping
approaches. Our fine-scale map enabled us to examine the functional impact of SVs, as
exemplified by our analysis of gene disruption variants, which will be of value for genome
and exome sequencing studies.

Our map further enabled us to examine size spectra of SV formation mechanisms and led us
to identify genomic SV hotspots that are commonly dominated by a single formation
mechanism. Recurrent rearrangements, implicated in genomic disorders, are hypothesized to
be associated with local genome architecture44, e.g., with segmental duplications that
facilitate NAHR. Also, DNA rearrangement in the absence of homology, i.e., MMBIR, has
been implicated in recurrent SV formation8,45. In this regard, we noticed that out of the
hotspots we report, six fall into critical regions of known genetic disorders associated with
recurrent de novo deletions, including Miller-Dieker syndrome and Leri-Weill
dyschondrosteosis (Supplementary Table 14). Irrespective of potential disease relevance, or
inferred mechanism of formation, our analysis revealed a map of SV hotspots that may
constitute local centers of de novo SV formation, consistent with the concept that local
genome architecture contributes to genomic instability44.

Our study focused on characterizing deletions, which are often associated with disease9.
Facilitated by ancestral analyses of SV loci, we also characterized insertions and tandem
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duplications, albeit in less detail than deletions. Companion papers with more detailed
analyses of MEIs, and copy-number variation within segmental duplications are published
elsewhere34,46. Of note, most SV discovery methods depend on mapping reads onto their
genomic locus of origin, i.e., the ‘accessible’ fraction of the genome, a fraction lessened in
segmental duplications that are of high interest to SV analysis. Nonetheless, owing to the
abilities of RP and RD methods in detecting SVs in these regions and in interpreting reads
with multiple mapping positions, the ‘accessible’ fraction of the genome is higher for SVs
than for SNPs16. In the future, sequencing technologies generating longer DNA reads will
increase the accessible genome, and will enable the assessment of SVs embedded in long
repeat structures, such as balanced inversions.

Our SV resource will enable the discovery, genotyping, and imputation of SVs in larger
cohorts. Numerous genomes will be sequenced in the coming months to facilitate disease
association studies. Systematic characterization of SVs in these genomes will benefit from
the concepts and datasets presented here.

Methods Summary
Samples

Sequence data for 179 unrelated individuals and six individuals from parent-offspring trios
were obtained as part of the 1000GP. These data were generated with Illumina/Solexa,
Roche/454, and Life Technologies/SOLiD sequencing technology platforms.

SV discovery and breakpoint assembly
The SV discovery methods we applied comprised six RP, four RD, three SR, four AS, and
two PD based methods. TIGRA38 was used for targeted breakpoint assembly.

Experimental validation
We validated SV calls by PCR, array CGH and SNP microarrays, targeted assembly, and
custom microarray-based sequence capture. PCR was performed in various different
laboratories33, CGH analysis was performed based on tiling array data provided by the
Genome Structural Variation Consortium (ArrayExpress: E-MTAB-40), and SNP array
analysis based on data obtained from the International HapMap Consortium
(http://hapmap.ncbi.nlm.nih.gov).

Genotyping
Genome STRiP36 was used for deletion genotyping in low coverage sequence data. Initial
genotype likelihoods were derived with a Bayesian model and imputation into a SNP
genotype reference panel from the HapMap41 (Hapmap3r2) was achieved with Beagle
(v3.1; http://faculty.washington.edu/browning/beagle/beagle.html).

SV formation mechanism analysis
SV breakpoints mapped at nucleotide resolution were analyzed with BreakSeq43 to classify
SVs relative to putative ancestral loci and to infer SV formation mechanisms. SV hotspots
were mapped with custom Perl and R scripts.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SV discovery and genotyping in population scale sequence data
A. Schematic depicting the different modes (i.e., approaches) of sequence based SV
detection we used. The RP approach assesses the orientation and spacing of the mapped
reads of paired-end sequences14,15 (reads are denoted by arrows); the RD approach
evaluates the read depth-of-coverage25,26; the SR approach maps the boundaries
(breakpoints) of SVs by sequence alignment28,29; the AS approach assembles SVs30,31,32.
B. Integrated pipeline for SV discovery, validation, and genotyping. Colored circles
represent individual SV discovery methods (listed in Supplementary Table 1), with modes
indicated by a color scheme: green=RP; yellow=RD; purple=SR; red=AS; green and
yellow=methods evaluating RP and RD (abbreviated as ‘PD’). C. Example of a deletion,
previously associated with BMI35, identified independently with RP (green), RD (yellow),
and SR (red) methods. Grey dots indicate position and mapping quality for individual
sequence reads. Targeted assembly confirmed the breakpoints detected by SR.
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Figure 2. Comparative assessment of deletion discovery methods
A. Deletion size-range ascertained by different modes of SV discovery. Three groups are
visible, with AS and SR, PD and RP, as well as RD and ‘RL’ (RP analysis involving
relatively long range (≥1 kb) insert size libraries, resulting in a different deletion detection
size range compared to the predominantly used <500kb insert size libraries), respectively,
ascertaining similar size-ranges. Pie charts display the contribution of different SV
discovery modes to the release set. Outer pie = based on number of SV calls; inner pie =
based on total number of variable nucleotides. Of note, not all approaches were applied
across all individuals (see Supplementary Table 2). B. Sensitivity and FDR estimates for
individual deletion discovery methods based on gold standard sets for individuals sequenced
at high (NA12878) and low-coverage (NA12156), respectively. All depicted estimates are
summarized in Supplementary Tables 3, 4, 6. Vertical dotted lines correspond to the
specificity threshold (FDR≤10%). C. Breakpoint mapping resolution of three deletion
discovery methods (the respective method names are in Supplementary Table 2). The blue
and red histograms are the breakpoint residuals for predicted deletion start and end
coordinates, respectively, relative to assembled coordinates (here assessed in low-coverage
data). The horizontal lines at the top of each plot mark the 98% confidence intervals (labeled
for each panel), with vertical notches indicating the positions of the most probable
breakpoint (the distribution mode).
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Figure 3. Analysis of deletion presence and absence in two populations
A-C. Deletion allele frequencies and observed sharing of alleles across populations,
displayed for deletions discovered in the CEU, YRI, and JPT+CHB population samples in
terms of stacked bars. D. Allele frequency spectra for deletions intersecting with intergenic
(blue), intronic (yellow), and protein-coding sequences (red).
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Figure 4. Contribution of SV formation mechanisms to the SV size spectrum
A. Breakpoint junction homology/microhomology length plotted as a function of SV size for
SVs originally identified as deletions compared to a human reference. Dots are colored
according to the SVs’ classification as deletions, insertions/duplications, or “undetermined”
relative to inferred ancestral genomic loci. Gray lines mark groups of SVs likely formed by
a common formation mechanism. The diagonal highlights tandem duplications (and few
reciprocal deletion events), in which the length of the duplicated sequence correlates linearly
with the length of the longest breakpoint junction sequence identity stretch. The ellipses
indicate MEIs, i.e., Alu (~300 bp) and L1 (~6 kb) insertions, associated with target site
duplications of up to 28 bp in size at the breakpoints. The horizontal group corresponds
mostly to NH-associated deletions with <10 bp microhomology at the breakpoints. The
remaining (ungrouped) SVs comprise truncated MEIs, VNTR expansion and shrinkage
events, as well as NAHR-associated deletions and duplications. B. Relative contributions of
SV formation mechanisms in the genome. Numbers of SVs are displayed on the outer pie
chart and affected base pairs on the inner. Left panel: SVs classified as deletions relative to
ancestral loci. Right panel: SVs classified as insertions/duplications. C. Size spectra of
deletions classified relative to ancestral loci. D. Size spectra of insertions/duplications.
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Figure 5. Mapping hotspots of SV formation in the genome
A. Distribution of SVs on chromosome 10 (“chr10”). Above the ideogram, colored bars
indicate SV formation mechanisms (same color scheme as in B and C); bar lengths relate to
the logarithm of SV size. Below the ideogram, bar lengths are directly proportional to allele
frequencies. Arrows indicate an SV hotspot near the centromere underlying mainly VNTR,
and several hotspots near the telomeres underlying mainly NAHR events. B. Enrichment of
SVs inferred to be formed by the same formation mechanism for different genomic window
sizes. Displayed is an enrichment of nearby, non-overlapping SVs formed by the same
mechanism relative to an SV set where mechanism assignments are shuffled randomly. C.
SV hotspots are mostly dominated by a single formation mechanism. Colored bars depict
numbers of SV hotspots in which at least 50% of the variants were inferred to be formed by
a single formation mechanism. The average abundance of NAHR-classified SVs in NAHR
hotspots was 70% (compared with 77% for VNTR-hotspots; 69% for NH). The gray bar
(“mixed”) corresponds to SV hotspots with no single mechanism dominating.
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